Jet production is studied in the Breit frame in deep-inelastic positron-proton scattering over a large range of four-momentum transfers 5 < Q^2 < 15000 GeV^2 and transverse jet energies 7 < E_T < 60 GeV. The analysis is based on data corresponding to an integrated luminosity of L_int \simeq 33 pb^(-1) taken in the years 1995-1997 with the H1 detector at HERA at a center-of-mass energy sqrt(s)=300 GeV. Dijet and inclusive jet cross sections are measured multi-differentially using k_perp and angular ordered jet algorithms. The results are compared to the predictions of perturbative QCD calculations in next-to-leading order in the strong coupling constant alphas.QCD fits are performed in which alphas and the gluon density in the proton are determined separately. The gluon density is found to be in good agreement with results obtained in other analyses using data from different processes. The strong coupling constant is determined to be alphas(MZ)=0.1186+-0.0059. In addition an analysis of the data in which both alphas and the gluon density are determined simultaneously is presented.
Inclusive single jet cross section as a function of ET and Q**2.. Data are analysed in the Breit frame using the inclusive kT alogrithm.
Inclusive dijet cross section as a function Q**2.. Data are analysed in the Breit frame using the inclusive kT alogrithm.
Inclusive di-jet cross section as a function of ET and Q**2.. Data are analysed in the Breit frame using the inclusive kT alogrithm.
About 4.4 million hadronic decays of Z bosons, recorded by the OPAL detector at LEP at a centre-of-mass energy of around sqrt(s) = 91.2 GeV, are used to determine the mean charged particle multiplicities for the three light quark flavours. Events from primary u, d, and s quarks are tagged by selecting characteristic particles which carry a large fraction of the beam energy. The charged particle multiplicities are measured in the hemispheres opposite to these particles. An unfolding procedure is applied to obtain these multiplicities for each primary light quark flavour. This yields <n_u> = 17.77 +- 0.51 +0.86 -1.20, <n_d> = 21.44 +- 0.63 +1.46 -1.17, <n_s> = 20.02 +- 0.13 +0.39 -0.37, where statistical and systematic errors are given. The results for <n_u> and <n_d> are almost fully statistically anti-correlated. Within the errors the result is consistent with the flavour independence of the strong interaction for the particle multiplicities in events from the light up, down, and strange quarks.
No description provided.
No description provided.
Jet production in charged and neutral current events in the kinematic range of Q^2 from 640 to 35000 GeV^2 is studied in deep-inelastic positron-proton scattering at HERA. The measured rate of multi-jet events and distributions of jet polar angle, transverse energy, dijet mass, and other dijet variables are presented. Using parton densities derived from inclusive DIS cross sections, perturbative QCD calculations in NLO are found to give a consistent description of both the neutral and charged current dijet production. A direct, model independent comparison of the jet distributions in charged and neutral current events confirms that the QCD dynamics of the hadronic final state is independent of the underlying electroweak scattering process.
Rates of charged current events as a function of Q**2.
Rates of neutral current events as a function of Q**2.
Normalised distribution in Y2 for NC and CC dijet events. Y2 is the smallest scaled value of KT (KTJET**2/W**2) given by the combination of (2+1) jets. The +1 refers to the proton remnant jet.
A measurement of triple gauge boson couplings is presented, based on W-pair data recorded by the OPAL detector at LEP during 1998 at a centre-of-mass energy of 189 GeV with an integrated luminosity of 183 pb^-1. After combining with our previous measurements at centre-of-mass energies of 161-183 GeV we obtain k_g=0.97 +0.20 -0.16, g_1^z=0.991 +0.060 -0.057 and lambda_g=-0.110 +0.058 -0.055, where the errors include both statistical and systematic uncertainties and each coupling is determined by setting the other two couplings to their SM values. These results are consistent with the Standard Model expectations.
Triple gauge boson couplings. All systematic errors are added in quadrature.
Measurements are presented of the polarisation of W+W- boson pairs produced in e+e- collisions, and of CP-violating WWZ and WWGamma trilinear gauge couplings. The data were recorded by the OPAL experiment at LEP during 1998, where a total integrated luminosity of 183 pb^-1 was obtained at a centre-of-mass energy of 189 GeV. The measurements are performed through a spin density matrix analysis of the W boson decay products. The fraction of W bosons produced with longitudinal polarisation was found to be sigma_L/sigma_total = (21.0 +- 3.3 +- 1.6)% where the first error is statistical and the second systematic. The joint W boson pair production fractions were found to be sigma_TT/sigma_total = (78.1 +- 9.0 +- 3.2) %, sigma_LL/sigma_total = (20.1 +- 7.2 +- 1.8) % and sigma_TL/sigma_total = (1.8 +- 14.7 +- 3.8) %. In the CP-violating trilinear gauge coupling sector we find kappa_z = -0.20 +0.10 -0.07, g^z_4 = -0.02 +0.32 -0.33 and lambda_z = -0.18 +0.24 -0.16, where errors include both statistical and systematic uncertainties. In each case the coupling is determined with all other couplings set to their Standard Model values except those related to the measured coupling via SU(2)_LxU(1)_Y symmetry. These results are consistent with Standard Model expectations.
Individual W-boson transverse polarised cross-sections.
Individual W-boson longitudinal polarised cross-sections.
W pair polarized cross-sections. (C=TT), (C=LL), and (C=TL) stand for both W transversely polarised, for both W longitudinally polarised, and for transversely and longitudinally polarisedW-bosons, respectively.
We have measured the transverse asymmetry from inclusive scattering of longitudinally polarized electrons from polarized 3He nuclei at quasi-elastic kinematics in Hall A at Jefferson Lab with high statistical and systematic precision. The neutron magnetic form factor was extracted based on Faddeev calculations with an experimental uncertainty of less than 2 %.
Ratio of neutron magnetic form-factor to dipole value.
The structure functions g1p and g1n have been measured over the range 0.014 < x < 0.9 and 1 < Q2 < 40 GeV2 using deep-inelastic scattering of 48 GeV longitudinally polarized electrons from polarized protons and deuterons. We find that the Q2 dependence of g1p (g1n) at fixed x is very similar to that of the spin-averaged structure function F1p (F1n). From a NLO QCD fit to all available data we find $\Gamma_1^p - \Gamma_1^n =0.176 \pm 0.003 \pm 0.007$ at Q2=5 GeV2, in agreement with the Bjorken sum rule prediction of 0.182 \pm 0.005.
Results for G1/F1 for the proton and neutron.
Results for G1/F1 for the proton and neutron.
Results for G1/F1 for the proton and neutron.
From a data sample of 183 pb^-1 recorded at a center-of-mass energy of roots = 189 GeV with the OPAL detector at LEP, 3068 W-pair candidate events are selected. Assuming Standard Model W boson decay branching fractions, the W-pair production cross section is measured to be sigmaWW = 16.30 +- 0.34(stat.) +- 0.18(syst.) pb. When combined with previous OPAL measurements, the W boson branching fraction to hadrons is determined to be 68.32 +- 0.61(stat.) +- 0.28(syst.) % assuming lepton universality. These results are consistent with Standard Model expectations.
Total W+ W- pair production cross section.
Cross sections for the individual decay modes of the W+ W-.
The inclusive cross section for the photoproduction of neutral pions has been measured as a function of the transverse momentum, rapidity, and Feynman x of the pizero mesons at an average photon--proton centre-of-mass energy of 208 GeV and for photon virtualities below Q^2=0.01 GeV^2. The pizero measurement extends the range covered by previous charged particle measurements at HERA by two units of rapidity in the photon direction down to a value of -5.5 in the gamma p centre-of-mass frame. The pizero transverse momentum distribution is well described over the whole measured range by a power law ansatz, while an exponential fit falls below the data at transverse momentum values above 1.5 GeV/c. Good agreement with the predictions of the Monte Carlo models PYTHIA and PHOJET is found. In the context of the PYTHIA model the data are inconsistent with large intrinsic transverse momentum values in the photon.
The inclusive PI0 photoproduction cross section in bias of rapidity and PT.Bin centre corrections have been applied and the errors are the quadratic sum o f the statistics and systematics (which dominate).
The inclusive PI0 photoproduction cross section as a function of PT for therapidity range -3.5 to -1.5. Bin centres are given in addition to limits. Error s are the quadratic sum of statistics and systematics.
The inclusive PI0 photoproduction cross section as a function of XL (the Feyman X variable) for the rapidity range -3.5 to -1.5. Bin centres are given as well as limits. Errors are the quadratic sum of statistics and systematics.
The photon structure function F2-gamma(x,Q**2) has been measured using data taken by the OPAL detector at centre-of-mass energies of 91Gev, 183Gev and 189Gev, in Q**2 ranges of 1.5 to 30.0 GeV**2 (LEP1), and 7.0 to 30.0 GeV**2 (LEP2), probing lower values of x than ever before. Since previous OPAL analyses, new Monte Carlo models and new methods, such as multi-variable unfolding, have been introduced, reducing significantly the model dependent systematic errors in the measurement.
Results of F2/ALPHAE for the LEP1 data using the SW for Q**2 = 1.9 GeV**2.
Results of F2/ALPHAE for the LEP1 data using the SW for Q**2 = 3.7 GeV**2.
Results of F2/ALPHAE for the LEP1 data using the FD for Q**2 = 8.9 GeV**2.