The first measurements of spin-rotation in meson-baryon scattering in the resonance region are presented. These measurements, for the reaction π − p → K 0 Λ , confirm the main predictions of a previous partial-wave analysis. Comments are made on resonant couplings in the reaction π − p → K 0 Λ .
SPIN ROTATION ANGLE MEASUREMENTS.
POLARIZATION MEASUREMENTS FROM THIS EXPERIMENT ALONE.
COMBINED WITH DATA FROM BAKER ET AL., AND SAXON ET AL., (SEE COMMENTS).
Inclusive e+e− production in 17-GeV/c π−p collisions has been measured. An excess of e+e− pairs over those from known sources for 0.1<~mee<~0.6 GeV and x<0.5 was found. No evidence is found for enhancements in specific final states involving electrons and photons or charged particles. The photon multiplicity associated with these pairs is measured.
No description provided.
This paper presents the results of a study of the dominant neutral final states from π−p interactions. The data were obtained in an experiment performed at the Brookhaven National Laboratory Alternating Gradient Synchrotron, using a set of steel-plate optical spark chambers surrounding a liquid-hydrogen target. We present differential and total cross sections for the reactions (1) π−p→n+π0 and (2) π−p→n+η0(η0→2γ) and total cross sections for the reactions (3) π−p→n+kπ0 (k=2, 3, 4, and 5) and (4) π−p→all neutrals for eighteen values of beam momentum in the interval 1.3 to 4.0 GeV/c. The angular distributions for (1) and (2) have been analyzed in terms of expansions in Legendre polynomials, the coefficients for which are also given.
No description provided.
SIG = 4*PI*LEG(L=0).
FORWARD DIFFERENTIAL CROSS SECTION CALCULATED FROM LEGENDRE POLYNOMIAL COEFFICIENTS AND ERROR MATRICES.
Differential cross-section and polarization measurements for the reaction π − p → K 0 Σ 0 are presented from 1395 to 2375 MeV/ c incident beam momentum. The polarization data from an earlier experiment, from thershold to 1334 MeV/ c , have been re-analysed by an improved method leading to a substantial reduction in the errors.
No description provided.
TOTAL CROSS SECTIONS DERIVED FROM LEGENDRE POLYNOMIAL FITS TO ANGULAR DISTRIBUTIONS.
LEGENDRE POLYNOMIAL FITS TO D(SIG)/DOMEGA.
New data are presented on the reaction π − p→K 0 Λ 0 at 13 incident momenta between 1395 and 2375 MeV/ c . A partial-wave analysis has been performed using these data and previous data at lower momenta. The resulting resonance parameters are in broad agreement with recent πN analyses and with the predictions of SU(6) W × O(3) for the couplings.
No description provided.
TOTAL CROSS SECTION FROM LEGENDRE POLYNOMIAL FIT TO D(SIG)/DOMEGA. ERRORS INCLUDE 20 PCT SYSTEMATIC NORMALIZATION ERROR.
LAMBDA USED TO ANALYZE POLARIZATION, ASSUMING 0.642 FOR THE DECAY ASYMMETRY PARAMETER.
New data are presented on the differential cross section and polarisation for the reaction π − p → K 0 Σ 0 at six incident momenta from threshold up to 1334 MeV/ c .
No description provided.
No description provided.
No description provided.
New data on differential cross sections and polarisation are presented at nine incident momenta up to 1334 MeV/ c . An energy-dependent phase-shift analysis has been made and resonance parameters are given.
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.
The π−+p→π0+n differential cross section at 180° has been measured for 52 values of π− momentum from 1.8 to 6.0 GeV/c using a constant-geometry detection system. The average statistical uncertainty is ∼5% and the systematic uncertainty is ∼10%. The details of the experiment and the data analysis are discussed. The data are compared with those of other experiments with which they are generally in agreement. One set of data disagrees with those presented here and a possible reason for this is discussed. A five-parameter fit of the predictions of a dual-resonance model to our data gave excellent agreement. The differential cross sections at 180° for π±p elastic scattering have been compiled and the moduli and relative phase of the T=12 and T=32 pion-nucleon s- and u-channel amplitudes (|A12|, |A32|, and cosδ) have a minimum at u=0.4 GeV/c and, in the s channel, a corresponding minimum at s=2.2 GeV/c.
No description provided.
No description provided.
No description provided.
We have analyzed the two-prong final states in π+p interactions at 3.9 GeVc. Our result for elastic scattering is σ (elastic) = 6.50±0.1 mb (statistical error only). We find the elastic slope to be 6.61±0.14 (GeVc)−2. We find the elastic forward cross section to be 40.0±1.4 mb(GeVc)2. We have applied a longitudinal-momentum analysis to the one-pion-production channel. We find the cross section for the reaction π++p→π++π0+p to be 2.30±0.06 mb and that for π++p→π++π++n to be 1.45±0.05 mb. For resonance-production cross sections in these channels we find Δ(1236)=0.60±0.07 mb, ρ(760)=0.86±0.06 mb, and diffraction dissociation = 1.69±0.11 mb. We find that we can satisfactorily fit all distributions in the one-pion-production channel without assuming any phase-space production. In the missing-mass channel we observe dominant Δ++(1236) production plus evidence for A2+ production.
No description provided.
No description provided.
No description provided.