The pi+ p interaction at 1.2 gev/c

Berthon, A. ; Mas, J. ; Narjoux, J.L. ; et al.
Nucl.Phys.B 81 (1974) 431-444, 1974.
Inspire Record 93412 DOI 10.17182/hepdata.7945

Experimental results are presented for the available channels in the 1.2 GeV/ c π + p interaction. An isobaric model with incoherent addition of the amplitudes is used to determine the π, Δ and N ∗ abundance rates in the π + π o p final state. The multipole parameters in the density matrix of the Δ ++ are determined as functions of its production angle.

7 data tables match query

No description provided.

LEGENDRE POLYNOMIAL FIT USED TO CORRECT FOR ELASTIC EVENTS LOST FROM THE FORWARD BIN.

No description provided.

More…

Inclusive Production of Nonstrange Mesons in anti-p p Annihilations

The Bombay-CERN-College de France-Madrid collaboration Hamatsu, R. ; Ganguli, S.N. ; Malhotra, P.K. ; et al.
Nucl.Phys.B 123 (1977) 189, 1977.
Inspire Record 111926 DOI 10.17182/hepdata.35452

A study of the inclusive production of π − , η , ϱ 0 , ω ad f mesons in p p annihilation at 0.7 GeV/ c is presented. Topological and channel cross sections are determined. Longitudinal and transversal momentum distributions of non-strange mesons are studied. It is deduced that nearly 48% of all negative pions arise from the decay of η , ϱ 0 , ω and f mesons.

2 data tables match query

No description provided.

No description provided.


Study of the D (1285) and E(1420) Resonances Produced in anti-p p Annihilations at 700-MeV/c to 760-MeV/c

Nacasch, R. ; Defoix, C. ; Dobrzynski, L. ; et al.
Nucl.Phys.B 135 (1978) 203-223, 1978.
Inspire Record 122850 DOI 10.17182/hepdata.41975

In this paper we have investigated the properties of the D(1285) and E(1420) meson resonances using the five-body annihilation channels p p → K K πππ obtained in a large statistics experiment (28 events/μb). The analysis favours the 1 + spin-parity assignment for the D(1285) meson. The dominant decay mode of the D(1285) into K K π is found to be δ(970)π. The situation concerning the E(1420) meson remains confused although not inconsistent with previous analyses. Partial cross sections on resonance production are also presented.

1 data table match query

No description provided.


Version 3
Improved Sterile Neutrino Constraints from the STEREO Experiment with 179 Days of Reactor-On Data

The STEREO collaboration Almazán, H. ; Bernard, L. ; Blanchet, A. ; et al.
Phys.Rev.D 102 (2020) 052002, 2020.
Inspire Record 1770821 DOI 10.17182/hepdata.92323

The STEREO experiment is a very short baseline reactor antineutrino experiment. It is designed to test the hypothesis of light sterile neutrinos being the cause of a deficit of the observed antineutrino interaction rate at short baselines with respect to the predicted rate, known as the reactor antineutrino anomaly. The STEREO experiment measures the antineutrino energy spectrum in six identical detector cells covering baselines between 9 and 11 m from the compact core of the ILL research reactor. In this article, results from 179 days of reactor turned on and 235 days of reactor turned off are reported at a high degree of detail. The current results include improvements in the modelling of detector optical properties and the gamma-cascade after neutron captures by gadolinium, the treatment of backgrounds, and the statistical method of the oscillation analysis. Using a direct comparison between antineutrino spectra of all cells, largely independent of any flux prediction, we find the data compatible with the null oscillation hypothesis. The best-fit point of the reactor antineutrino anomaly is rejected at more than 99.9% C.L.

22 data tables match query

Data from Figures 33 and 34 – STEREO exclusion and exclusion sensitivity contours at 95% C.L. for 179 days reactor-on (phase-I+II) using the two-dimensional method. A graphical presentation can be downloaded at "Resources" for reference.

Data from Figures 33 and 34 – STEREO exclusion and exclusion sensitivity contours at 95% C.L. for 179 days reactor-on (phase-I+II) using the two-dimensional method. A graphical presentation can be downloaded at "Resources" for reference.

Data from Figure 32 – STEREO exclusion and exclusion sensitivity contours at 90% C.L. for 179 days reactor-on (phase-I+II). A full graphical presentation can be downloaded at "Resources" for reference.

More…

First antineutrino energy spectrum from $^{235}$U fissions with the STEREO detector at ILL

The STEREO collaboration Almazán, H. ; Bernard, L. ; Blanchet, A. ; et al.
J.Phys.G 48 (2021) 075107, 2021.
Inspire Record 1821378 DOI 10.17182/hepdata.99805

This article reports the measurement of the $^{235}$U-induced antineutrino spectrum shape by the STEREO experiment. 43'000 antineutrinos have been detected at about 10 m from the highly enriched core of the ILL reactor during 118 full days equivalent at nominal power. The measured inverse beta decay spectrum is unfolded to provide a pure $^{235}$U spectrum in antineutrino energy. A careful study of the unfolding procedure, including a cross-validation by an independent framework, has shown that no major biases are introduced by the method. A significant local distortion is found with respect to predictions around $E_\nu \simeq 5.3$ MeV. A gaussian fit of this local excess leads to an amplitude of $A = 12.1 \pm 3.4\%$ (3.5$\sigma$).

3 data tables match query

STEREO Detector Response Matrix, sampled using STEREO's simulation using neutrinos with energy distributed according to HFR's IBD yield prediction. The matrix is given as a 200x22 matrix, with 200 50keV-wide $E_\nu$ bins (centers ranging from 0.05 to 10 MeV) and 22 250keV-wide measured-energy bins corresponding to measured data. The matrix is not normalized; desired normalization (e.g., $\sum_j R_{ij} = e_i$ where $e_i$ is the efficiency) has to be applied before the matrix can be used.

Data from Figure 6 – Selection efficiency as a function of $E_\nu$.

Spectrum prediction for ILL's High Flux Reactor, given in 50keV-wide $E_\nu$ bins (centers ranging from 1.8 to 10 MeV). Huber's $^{235}$U prediction in [2 MeV, 8 MeV] is taken from Phys. Rev. C 84 024617 (2011); exponential extrapolations are performed as described in Phys. Rev. Lett. 125 201801 (2020). Relative corrections from Off-equilibrium and Activation are included to obtain the total HFR's spectrum. The IBD cross section we used is based on Strumia-Vissani Phys. Lett. B, 564 42–54 (2003). The IBD yield is simply HFR's spectrum $\times$ IBD cross section. More details can be found in Section 5, where all notations are also introduced.


Search for massive resonances in dijet systems containing jets tagged as W or Z boson decays in pp collisions at sqrt(s)= 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
JHEP 08 (2014) 173, 2014.
Inspire Record 1294937 DOI 10.17182/hepdata.2348

A search is reported for massive resonances decaying into a quark and a vector boson (W or Z), or two vector bosons (WW, WZ, or ZZ). The analysis is performed on an inclusive sample of multijet events corresponding to an integrated luminosity of 19.7 inverse femtobarns, collected in proton-proton collisions at a centre-of-mass energy of 8 TeV with the CMS detector at the LHC. The search uses novel jet-substructure identification techniques that provide sensitivity to the presence of highly boosted vector bosons decaying into a pair of quarks. Exclusion limits are set at a confidence level of 95% on the production of: (i) excited quark resonances q* decaying to qW and qZ for masses less than 3.2 TeV and 2.9 TeV, respectively, (ii) a Randall-Sundrum graviton G[RS] decaying into WW for masses below 1.2 TeV, and (iii) a heavy partner of the W boson W' decaying into WZ for masses less than 1.7 TeV. For the first time mass limits are set on W' to WZ and G[RS] to WW in the all-jets final state. The mass limits on q* to qW, q* to qZ, W' to WZ, G[RS] to WW are the most stringent to date. A model with a "bulk" graviton G[Bulk] that decays into WW or ZZ bosons is also studied.

9 data tables match query

DATA - Double W/Z tagged events in HIGH purity bin.

BACKGROUND - Double W/Z tagged background in HIGH purity bin estimated from a fit to data.

BACKGROUND PLUS - Double W/Z tagged background variation upward (1 sigma) in HIGH purity bin estimated from a fit to data.

More…

Results of the experiments from the neutral detector at the VEPP-2M storage ring in the energy region 2E$_{0}$ = 1.05 - 1.40 GeV

Dolinski, S.I. ; Druzhinin, V P ; Dubrovin, M S ; et al.
IYAF-85-98, 1985.
Inspire Record 1393709 DOI 10.17182/hepdata.982

None

4 data tables match query

No description provided.

No description provided.

No description provided.

More…

Measurements of the Photon Total Cross-Section on Protons from 18-GeV to 185-GeV

Caldwell, David O. ; Cumalat, John P. ; Eisner, A.M. ; et al.
Phys.Rev.Lett. 40 (1978) 1222, 1978.
Inspire Record 129172 DOI 10.17182/hepdata.3355

The photon total cross section on protons has been measured with high precision in the Fermilab tagged-photon beam for photon energies from 18 to 185 GeV. The cross section decreases to a broad minimum near 40 GeV, and then rises by about 4 μb over the remainder of the range. A ρ+ω+ϕ vector-dominance model (normalized to low-energy data) falls below the high-energy results by 2 to 6 μb, suggesting a contribution from charm-anticharm states.

2 data tables match query

No description provided.

No description provided.


Anti-proton - proton elastic scattering at s**(1/2) = 1.8-TeV from |t| = 0.034-GeV/c**2 to 0.65-GeV/c**2

The E-710 collaboration Amos, Norman A. ; Avila, C. ; Baker, W.F. ; et al.
Phys.Lett.B 247 (1990) 127-130, 1990.
Inspire Record 297541 DOI 10.17182/hepdata.29660

The differential cross section for elastic antiproton—proton scattering at s =1.8 TeV has been measured over the t range 0.034⩽| t |⩽0.65 (GeV/ c ) 2 . A logarithmic slope parameter, B , of 16.3±0.3 (GeV/ c ) −2 is obtained. In contrast to lower energy experiments, no change in slope is observed over this t range.

2 data tables match query

Numerical values from FERMILAB-FN-562 suppliedto us by R. Rubinstein. Statistical errors only. t values at centre of each bin.

Nuclear slope parameter. Error contains 0.3 GeV**-2 systematic uncertainty folded.


Measurement of the Proton Elastic Form-factors for $Q^2=1$-{GeV}/$c^2$ - 3-{GeV}/$c^2$

Walker, R.C. ; Filippone, B.W. ; Jourdan, J. ; et al.
Phys.Lett.B 224 (1989) 353-353, 1989.
Inspire Record 284687 DOI 10.17182/hepdata.29803

We report measurements of the proton elastic form factors, G E p and G M p , extracted from electron scattering in the range 1⩽ Q 2 ⩽3(GeV/ c ) 2 . The uncertainties are <15% in G E p and <3% in G M p . The values of G E p are larger than indicated by most theoretical parameterizations, The ratio of Pauli and Dirac form factors, Q 2 F 2 p / F 1 p , is lower and demonstrates less Q 2 dependence than most of these parameterizations. Comparisons are made to theoretical models, including those based on perturbative QCD and vector-meson dominance.

4 data tables match query

No description provided.

No description provided.

No description provided.

More…