The reaction K + p → K ∗o (892) Δ ++ (1236) has been studied at 3 GeV/ c in both a hydrogen and a deuterium bubble chamber experiment. The production mechanism is described by a Regge-type model using π- and B-exchange. The joint decay distributions are analysed in various frames and compared with quark-model predictions.
No description provided.
No description provided.
No description provided.
From a bubble chamber exposure in an antiproton beam at 5.7 GeV/ c yielding 13 events/μb, the final states p ̄ p → Y 1 ∗+ (1385)Λ, Y 1 ∗+ (1385)Σ + , Y 1 ∗+ (1385) Y 1 ∗+ (1385) have been isolated. We have measured the total cross section, d σ /d t , and the complete density matrix of the Y ∗ for these processes. Upper limits have been set to the forbidden reactions p ̄ p → Y 1 ∗− (1385)Σ − , Y 1 ∗− (1385) Y 1 ∗− (1385) .
VALUE OF PRODUCTION CROSS-SECTION IN TEXT HALVED AS INCLUDED CHARGE CONJUGATE REACTION.
VALUE OF PRODUCTION CROSS-SECTION IN TEXT HALVED AS INCLUDED CHARGE CONJUGATE REACTION.
No description provided.
At 3 GeV/ c , the total and differential cross sections of the reactions K − n → Y π − have been determined for nine S = −1 baryonic states. Backward peaks associated with a dip near u = −0.2 are observed in many cases. They have been interpreted, for the isospin-zero Y-states, in terms of a proton-exchange mechanism. The backward peaks in the reactions K − n → Λπ − and K − n → Σ o π − have been more quantitatively related to the backward π N → N π differential cross sections at the same energy. This comparison leads to the conclusion, that the first reaction is dominated by nucleon exchange, whereas the second one requires a more complex exchange mechanism.
No description provided.
No description provided.
No description provided.
The polarization parameter for K + p elastic scattering has been measured at 1.60, 1.80, 2.11 and 3.31 GeV/ c incident momenta over the entire angular range with an emphasis on the backward region. The results in the extreme backward region appear to be small and consistent with zero.
No description provided.
This work extends our previous investigations at the CERN Intersecting Storage Rings, with improved statistics at three different energies, wider angular range and a better control over systematic errors. Values for the (diffraction) shape parameter b are given.
No description provided.
No description provided.
No description provided.
The absolute luminosity of the CERN Intersecting Storage Rings has been determined by the Van der Meer method. Combining the measurement with small angle proton-proton elastic events, we find σ elastic = (6.8±0.6)mb.
No description provided.
41 ± 8 events of the type X 0 → γγ have been observed in a study of the reaction π − p → n(X 0 → γγ ) at 1.6 GeV/ c incident π -momentum. This provides further evidence to our previous observation of this new X 0 decay mode and allows the determination of the branching ratio Γ(X 0 →γγ) Γ(X 0 → total =(1.7 ± 0.4)%. The theoretical implications of this result are discussed.
THIS MEASUREMENT WHEN COMBINED WITH THE ETAPRIME PRODUCTION CROSS SECTION OF M. BASILE ET AL., NC 3A, 371 (1971) YIELDS A BR(ETAPRIME --> 2GAMMA) OF 1.7 +- 0.4 PCT.
Using wire spark chambers we have observed the backward production of ϱ + mesons in the reaction π + p → p (missing mass) at 5.2 GeV/ c . In the four-momentum interval −0.80 < u < −0.006 (GeV/ c ) 2 the angular distribution shows a backward peak. In contrast to backward π + p elastic scattering, there is no dip in the angular distribution at u ≈ −0.15 (GeV/ c ) 2 . The ϱ + decay is found to be compatible with isotropy.
No description provided.
In an analysis of the reaction K − n →Λ4π at 3 GeV c we find evidence for the production of the B(1220) resonance, mainly decaying in ωπ. For the mass and width we find (1236 ± 15) MeV c 2 and (132±20) MeV c 2 respectively. The cross section for the reaction K − n→ Λ +B(1220) is found to be (102±26) μ b.
No description provided.
Nucleon resonance production in the two-body reaction p + p → p + N ∗ has been studied at 24 GeV/ c incident momentum for angles from 12 to 117 mrad by measuring proton momentum spectra from the elastic peak down to a momentum corresponding to a missing mass of about 2.6 GeV.
No description provided.