Version 2
Forward jet and particle production at HERA

The H1 collaboration Adloff, C. ; Anderson, M. ; Andreev, V. ; et al.
Nucl.Phys.B 538 (1999) 3-22, 1999.
Inspire Record 476801 DOI 10.17182/hepdata.44172

Single particles and jets in deeply inelastic scattering at low x are measured with the H1 detector in the region away from the current jet and towards the proton remnant, known as the forward region. Hadronic final state measurements in this region are expected to be particularly sensitive to QCD evolution effects. Jet cross-sections are presented as a function of Bjorken-x for forward jets produced with a polar angle to the proton direction, theta, in the range 7 < theta < 20 degrees. Azimuthal correlations are studied between the forward jet and the scattered lepton. Charged and neutral single particle production in the forward region are measured as a function of Bjorken-x, in the range 5 < theta < 25 degrees, for particle transverse momenta larger than 1 GeV. QCD based Monte Carlo predictions and analytical calculations based on BFKL, CCFM and DGLAP evolution are compared to the data. Predictions based on the DGLAP approach fail to describe the data, except for those which allow for a resolved photon contribution.

11 data tables match query

Forward Jet cross section. Axis error includes +- 7/7 contribution (Dependence of the model used to correct the data).

Forward Di-jet cross section. Axis error includes +- 7/7 contribution (Dependence of the model used to correct the data).

Data from Figure 3a on charged particle production

More…

Substructure dependence of jet cross sections at HERA and determination of alpha(s).

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Loizides, J.H. ; et al.
Nucl.Phys.B 700 (2004) 3-50, 2004.
Inspire Record 650732 DOI 10.17182/hepdata.46136

Jet substructure and differential cross sections for jets produced in the photoproduction and deep inelastic ep scattering regimes have been measured with the ZEUS detector at HERA using an integrated luminosity of 82.2 pb-1. The substructure of jets has been studied in terms of the jet shape and subjet multiplicity for jets with transverse energies Et(jet) > 17 GeV. The data are well described by the QCD calculations. The jet shape and subjet multiplicity are used to tag gluon- and quark-initiated jets. Jet cross sections as functions of Et(jet), jet pseudorapidity, the jet-jet scattering angle, dijet invariant mass and the fraction of the photon energy carried by the dijet system are presented for gluon- and quark-tagged jets. The data exhibit the behaviour expected from the underlying parton dynamics. A value of alphas(Mz) of alphas(Mz) = 0.1176 +-0.0009(stat.) -0.0026 +0.0009 (exp.) -0.0072 +0.0091 (th.) was extracted from the measurements of jet shapes in deep inelastic scattering.

31 data tables match query

Measured mean integrated jet shape corrected to the hadron level in photoproduction with ET(C=JET) > 17 GeV.

Measured mean integrated jet shape corrected to the hadron level in photoproduction with ET(C=JET) > 17 GeV.

Measured mean integrated jet shape corrected to the hadron level in photoproduction with -1 < ETARAP(C=JET) < 2.5.

More…

Dijet production in charged and neutral current e+ p interactions at high Q**2.

The H1 collaboration Adloff, C. ; Andreev, V. ; Andrieu, B. ; et al.
Eur.Phys.J.C 19 (2001) 429-440, 2001.
Inspire Record 534736 DOI 10.17182/hepdata.46947

Jet production in charged and neutral current events in the kinematic range of Q^2 from 640 to 35000 GeV^2 is studied in deep-inelastic positron-proton scattering at HERA. The measured rate of multi-jet events and distributions of jet polar angle, transverse energy, dijet mass, and other dijet variables are presented. Using parton densities derived from inclusive DIS cross sections, perturbative QCD calculations in NLO are found to give a consistent description of both the neutral and charged current dijet production. A direct, model independent comparison of the jet distributions in charged and neutral current events confirms that the QCD dynamics of the hadronic final state is independent of the underlying electroweak scattering process.

9 data tables match query

Rates of charged current events as a function of Q**2.

Rates of neutral current events as a function of Q**2.

Normalised distribution in Y2 for NC and CC dijet events. Y2 is the smallest scaled value of KT (KTJET**2/W**2) given by the combination of (2+1) jets. The +1 refers to the proton remnant jet.

More…

Forward jet production in deep inelastic scattering at HERA

The ZEUS collaboration Breitweg, J. ; Derrick, M. ; Krakauer, D. ; et al.
Eur.Phys.J.C 6 (1999) 239-252, 1999.
Inspire Record 470499 DOI 10.17182/hepdata.44288

The inclusive forward jet cross section in deep inelastic $e^+p$ scattering has been measured in the region of $x$--Bjorken, ~$4.5 \cdot 10^{-4}$~ to ~$4.5 \cdot 10^{-2}$. This measurement is motivated by the search for effects of BFKL--like parton shower evolution. The cross section at hadron level as a function of \xbj is compared to cross sections predicted by various Monte Carlo models. An excess of forward jet production at small \xbj is observed, which is not reproduced by models based on DGLAP parton shower evolution. The Colour Dipole model describes the data reasonably well. Predictions of perturbative QCD calculations at the parton level based on BFKL and DGLAP parton evolution are discussed in the context of this measurement.

1 data table match query

The second systematic (DSYS) error is the correlated systematic error due to the scale uncertainty of the calorimeter.


Measurement of the E(T,jet)**2/Q**2 dependence of forward-jet production at HERA.

The ZEUS collaboration Breitweg, J. ; Chekanov, S. ; Derrick, M. ; et al.
Phys.Lett.B 474 (2000) 223-233, 2000.
Inspire Record 508906 DOI 10.17182/hepdata.43875

The forward-jet cross section in deep inelastic ep scattering has been measured using the ZEUS detector at HERA with an integrated luminosity of 6.36 pb^-1. The jet cross section is presented as a function of jet transverse energy squared, E(T,jet)^2, and Q^2 in the kinematic ranges 10^-2<E(T,jet)^2/Q^2<10^2 and 2.5 10^-4<x<8.0 10^-2. Since the perturbative QCD predictions for this cross section are sensitive to the treatment of the log(E_T/Q)^2 terms, this measurement provides an important test. The measured cross section is compared to the predictions of a next-to-leading order pQCD calculation as well as to various leading-order Monte Carlo models. Whereas the predictions of all models agree with the measured cross section in the region of small E(T,Jet)^2/Q^2, only one model, which includes a resolved photon component, describes the data over the whole kinematic range.

2 data tables match query

Forward jet cross section as a function of ET**2/Q**2. The second DSYS error is the uncertainty in the energy scale of the calorimeter.

Measured forward-jet x distribution.


Study of the azimuthal asymmetry of jets in neutral current deep inelastic scattering at HERA.

The ZEUS collaboration Chekanov, S. ; Krakauer, D. ; Magill, S. ; et al.
Phys.Lett.B 551 (2003) 226-240, 2003.
Inspire Record 600814 DOI 10.17182/hepdata.46545

The azimuthal distribution of jets produced in the Breit frame in high-Q**2 deep inelastic e+p scattering has been studied with the ZEUS detector at HERA using an integrated luminosity of 38.6 pb-1. The measured azimuthal distribution shows a structure that is well described by next-to-leading-order QCD predictions over the Q**2 range considered, Q**2>125 GeV**2.

4 data tables match query

The normalised differential cross section as a function of azimuthal angle for inclusive jet production in the Breit frame.

The folded normalised differential cross section as a function of azimuthalangle for inclusive jet production in the Breit frame.

The folded normalised differential cross section as a function of azimuthalangle for inclusive jet production in the Breit frame.

More…

Measurement of inclusive jet cross-sections in deep-inelastic e p scattering at HERA.

The H1 collaboration Adloff, C. ; Andreev, V. ; Andrieu, B. ; et al.
Phys.Lett.B 542 (2002) 193-206, 2002.
Inspire Record 588263 DOI 10.17182/hepdata.46544

A measurement of inclusive jet cross-sections in deep-inelastic ep scattering at HERA is presented based on data with an integrated luminosity of 21.1 pb^-1. The measurement is performed for photon virtualities Q^2 between 5 and 100 GeV^2, differentially in Q^2, in the jet transverse energy E_T, in E_T^2/Q^2 and in the pseudorapidity eta_lab. With the renormalization scale mu_R = E_T, perturbative QCD calculations in next-to-leading order (NLO) give a good description of the data in most of the phase space. Significant discrepancies are observed only for jets in the proton beam direction with E_T below 20 GeV and Q^2 below 20 GeV^2. This corresponds to the region in which NLO corrections are largest and further improvement of the calculations is thus of particular interest.

5 data tables match query

Inclusive jet cross sections DSIG/DET(JET) as a function of ET(JET) in three pseudorapidity ranges.

Inclusive jet cross sections DSIG/DET(JET) as a function of ET(JET) in five Q**2 ranges for the forward pseudorapidity range 1.5 to 2.8.

Inclusive jet cross section DSIG/D(ET**2/Q**2) in the pseudorapidity range -1.0 to 0.5.

More…

Forward-jet production in deep inelastic ep scattering at HERA

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Magill, S. ; et al.
Eur.Phys.J.C 52 (2007) 515-530, 2007.
Inspire Record 756364 DOI 10.17182/hepdata.45524

Forward jet cross sections have been measured in neutral current deep inelastic scattering at low Bjorken-x with the ZEUS detector at HERA using an integrated luminosity of ${81.8 \rm pb}^{-1}$. Measurements are presented for inclusive forward jets as well as for forward jets accompanied by a dijet system. The explored phase space, with jet pseudorapidity up to 4.3 is expected to be particularly sensitive to the dynamics of QCD parton evolution at low x. The measurements are compared to fixed-order QCD calculations and to leading-order parton-shower Monte Carlo models.

14 data tables match query

Differential cross section DSIG/DQ**2 in bins of Q**2 .

Differential cross section DSIG/DX in bins of X .

Differential cross section DSIG/DET(P=4) in bins of ET(P=4) .

More…

Inclusive jet cross sections in the Breit frame in neutral current deep inelastic scattering at HERA and determination of alpha(s).

The ZEUS collaboration Chekanov, S. ; Krakauer, D. ; Magill, S. ; et al.
Phys.Lett.B 547 (2002) 164-180, 2002.
Inspire Record 593409 DOI 10.17182/hepdata.46572

Inclusive jet differential cross sections have been measured in neutral current deep inelastic e+p scattering for boson virtualities Q**2>125 GeV**2. The data were taken using the ZEUS detector at HERA and correspond to an integrated luminosity of 38.6 pb-1. Jets were identified in the Breit frame using the longitudinally invariant K_T cluster algorithm. Measurements of differential inclusive jet cross sections are presented as functions of jet transverse energy (E_T,jet), jet pseudorapidity and Q**2, for jets with E_T,jet>8 GeV. Next-to-leading-order QCD calculations agree well with the measurements both at high Q**2 and high E_T,jet. The value of alpha_s(M_Z), determined from an analysis of dsigma/dQ**2 for Q**2>500 GeV**2, is alpha_s(M_Z) = 0.1212 +/- 0.0017 (stat.) +0.0023 / -0.0031 (syst.) +0.0028 / -0.0027 (th.).

9 data tables match query

Inclusive jet cross section DSIG/DQ**2 for jets of hadrons in the Breit frame.

Inclusive jet cross section DSIG/DET for jets of hadrons in the Breit frame.

Inclusive jet cross section DSIG/DETARAP for jets of hadrons in the Breit frame.

More…

Inclusive-jet and dijet cross sections in deep inelastic scattering at HERA.

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Magill, S. ; et al.
Nucl.Phys.B 765 (2007) 1-30, 2007.
Inspire Record 724050 DOI 10.17182/hepdata.45641

Inclusive-jet and dijet differential cross sections have been measured in neutral current deep inelastic ep scattering for exchanged boson virtualities Q2 > 125 GeV2 with the ZEUS detector at HERA using an integrated luminosity of 82 pb-1. Jets were identified in the Breit frame using the kt cluster algorithm. Jet cross sections are presented as functions of several kinematic and jet variables. The results are also presented in different regions of Q2. Next-to-leading-order QCD calculations describe the measurements well. Regions of phase space where the theoretical uncertainties are small have been identified. Measurements in these regions have the potential to constrain the gluon density in the proton when used as inputs to global fits of the proton parton distribution functions.

17 data tables match query

Dijet cross section as a function of Q**2 in the Breit frame.

Dijet cross section as a function of Bjorken X in the Breit frame.

Dijet cross section as a function of the mean ET of the jets in the Breit frame.

More…