An analysis of inclusive pion production in proton-beryllium collisions at 6.4, 12.3, and 17.5 GeV/c proton beam momentum has been performed. The data were taken by Experiment 910 at the Alternating Gradient Synchrotron at the Brookhaven National Laboratory. The differential $\pi^+$ and $\pi^-$ production cross sections ($d^2\sigma/dpd\Omega$) are measured up to 400 mRad in $\theta_{\pi}$ and up to 6 GeV/c in $p_{\pi}$. The measured cross section is fit with a Sanford-Wang parameterization.
Pion production cross section for 6.4 GeV incident protons.
Pion production cross section for 6.4 GeV incident protons.
Pion production cross section for 6.4 GeV incident protons.
Differential cross-sections are presented for the inclusive production of charged pions in the momentum range 0.1 to 1.2 GeV/c in interactions of 12.3 and 17.5 GeV/c protons with Be, Cu, and Au targets. The measurements were made by Experiment 910 at the Alternating Gradient Synchrotron in Brookhaven National Laboratory. The cross-sections are presented as a function of pion total momentum and production polar angle $\theta$ with respect to the beam.
The pion production cross section of P-AU interactions at 17.5 GeV incidentmomentum.
The pion production cross section of P-AU interactions at 17.5 GeV incidentmomentum.
The pion production cross section of P-AU interactions at 17.5 GeV incidentmomentum.
In the very heavy collision system Au197+197Au the K+ production process was studied as a function of impact parameter at 1 GeV/nucleon, a beam energy well below the free N-N threshold. The K+ multiplicity increases more than linearly with the number of participant nucleons and the K+/π+ ratio rises significantly when going from peripheral to central collisions. The measured K+ double differential cross section is enhanced by a factor of 6 compared to microscopic transport calculations if secondary processes (ΔN→KΛN and ΔΔ→KΛN) are ignored.
No description provided.
The total K+ cross section is determined by extrapolating and integrating the double differential cross section d2(sig)/d(p)/d(omega) over momentum and solid angle.