3600 two-pronged events, obtained in p−p interactions at 2 Bev in the BNL 20-in. hydrogen bubble chamber, have been analyzed. Cross sections have been measured for elastic scattering, for the two modes of single-pion production, p+p→p+n+π+, p+p→p+p+π0, and for strange-particle production. The branching ratio for the two one-pion production reactions is σ(pnπ+)σ(ppπ0)=4.17±0.25. Momentum distributions and Q values indicate that single-pion production proceeds almost entirely through the (32, 32) resonant state. The data have been considered in terms of the extended isobar model and also a one-pion exchange model for production. The branching ratio and momentum distributions can be explained by including a small effect from the I=12 resonant state in addition to the dominant I=32 resonance. The c.m. angular distribution of the nucleons in single-pion production shows very marked backward-forward peaking indicating a one-pion exchange mechanism. Absolute differential cross sections as a function of laboratory kinetic energy have been calculated from Selleri's equation for the pnπ+ reaction. There is good agreement with the data for low four-momentum transfers [q2<0.15(Bev/c)2], but for higher momentum transfers the theoretical cross sections are larger than the experimental cross sections.
No description provided.
212 interactions of 2.75-Bev protons have been observed in a hydrogen-filled diffusion cloud chamber. The data indicate an elastic cross section of 15 millibarns, with about 9 millibarns cross section for single pion production, 13 millibarns for double, and 4 for triple. There is one example of quadruple pion production. One definite example of the production of heavy unstable particles was observed, and two doubtful cases. The median elastic scattering angle was 19° in the c.m. system. Angle and momentum distributions for inelastic events are consistent with those observed at lower energies.
'1'. '2'. '1'. '3'.