We present data on the reaction ν p → μ + pπ − from an exposure of the Fermilab 15 ft hydrogen bubble chamber. The channel cross section for 5 GeV < E ν < 70 GeV and M( p π − ) < 1.9 GeV is σ = (27 ± 5) × 10 −40 cm 2 . This cross section is dominated by the I = 1 2 production amplitude.
We present results on flux-normalized neutrino and antineutrino cross sections near y=0 from data obtained in the Fermilab narrow-band beam. We conclude that values of σ0=dσdy|y=0 are consistent with rising linearly with energy over the range 45<~Eν<~20.5 GeV. The separate averages of ν and ν¯, each measured to 4%, are equal to well within the errors. The best fit for the combined data gives σ0E=(0.719±0.035)×10−38 cm2/GeV at an average Eν of 100 GeV.
Measurements of flux-normalized neutrino and antineutrino total charged-current cross sections (σ) in the energy range 45
We have measured charged-particle production in neutron-nucleus collisions at high energy. Data on positive and negative particles produced in nuclei [ranging in atomic number (A) from beryllium to lead] are presented for essentially the full forward hemisphere of the center-of-mass system. A rough pion-proton separation is achieved for the positive spectra. Fits of the form Aα to the cross sections are presented as functions of transverse momentum, longitudinal momentum, rapidity, and pseudorapidity. It is found that α changes from ∼0.85 to ∼0.60 for laboratory rapidities ranging from 4 to 8. Trends in the data differ markedly when examined in terms of pseudorapidity rather than rapidity. Qualitatively, the major features of our data can be understood in terms of current particle-production models.
Experimental results for the cross-sections, the effectivemass distributions, the angular distributions and correlations are presented for the reaction\(\bar p\)p → 3π−3π+. All the multipion mass distributions and the ππ angular correlations are described in terms of a final-state interaction model including theδ00 andδ11 ππ phase shifts, as well as an A2 effect.
Antiproton-proton annihilations into final states containing one or two K10-mesons are studied on the basis of 450 000 pictures from the CERN 2 m HBC. The experiment covers the domain of antiproton incident momentum from 1.50 to 2.04 GeV/c. The resonance production rates are computed for the most abundant channels. The K10K10 threshold effect is explained through the inelastic channel π+π− → K10K10. The decay modes D, E → δ±(975)π∓, δ±(975) → K10K± are pointed out. The strange mesons C and C′ are observed in these annihilations and come mainly from the two-body channels \(p\bar p\) → (C, C′)K and\(p\bar p\) → (C, C′)K*.
The energy dependence of the modulus and phase of the K L 0 -K S 0 regeneration amplitude on hydrogen in the range of 14–50 GeV has been investigated at the Serpukhov 70 GeV accelerator. It has been established that the modulus of the modified regeneration amplitude decreases with increasing momentum as 2|ƒ 21 0 (p)|/k = (0.84 ± 0.42) · p −0.50±0.15 mb . The amplitude phase is energy-independent and its mean value is ϕ 21 0 = −132° ± 5°. The results obtained are compared with other experiments and with predictions of different theoretical models.
None
None
We present results from an experiment studying the production of single particles and jets (groups of particles) with high p ⊥ (transverse momentum) in 200 GeV/ c interactions on a beryllium target. We give a detailed discussion of the ambiguities in the jet definition. The jet and single-particle cross sections have a similar shape but the jet cross section is over two orders of magnitude larger. The events show evidence for the coplanar structure suggested by constituent models, and the momentum distributions of charged particles give strong support to a simple quark-quark scattering model.