We have determined the coherent KS regeneration amplitudes on various nuclei, from 20 to 140 GeV/c, using a particularly systematics-free technique. Our results are well represented by |(f−f¯)k|=2.23A0.758p−0.614 mb. This p dependence corresponds to an effective "nuclear" intercept ``αω(0)''=0.386±0.009, whereas the elementary value is αω(0)=0.44±0.01. Comparisons are made with data below 25 GeV/c, and with optical-model predictions. The latter work only if "αω(0)" is postulated to hold for the elementary amplitudes.
No description provided.
None
THE AVERAGE PHASE IS -130.9 +- 2.7 DEG (NO EXPLICIT MOMENTUM DEPENDENCE). USING ABS(ETA+-) = 2.3*10**-3.
REGENERATION AMPLITUDE ASSUMING MOMENTUM INDEPENDENT CONSTANT PHASE.
CROSS SECTION DIFFERENCES ASSUMING MOMENTUM INDEPENDENT CONSTANT PHASE.
A measurement of the coherent regeneration amplitude in carbon in the energy range 30-130 GeV is presented. The results are consistent with the dominance of this process by ω exchange, and a precise value of the intercept of the ω trajectory is obtained: αω(0)=0.390±0.014.
No description provided.
The energy dependence of the modulus and phase of the K L 0 -K S 0 regeneration amplitude on hydrogen in the range of 14–50 GeV has been investigated at the Serpukhov 70 GeV accelerator. It has been established that the modulus of the modified regeneration amplitude decreases with increasing momentum as 2|ƒ 21 0 (p)|/k = (0.84 ± 0.42) · p −0.50±0.15 mb . The amplitude phase is energy-independent and its mean value is ϕ 21 0 = −132° ± 5°. The results obtained are compared with other experiments and with predictions of different theoretical models.
TABLE ALSO CALCULATES FORWARD DIFFERENTIAL CROSS SECTION AND SIG(AK0 P) - SIG(K0 P) TOTAL CROSS SECTION DIFFERENCES.
The modulus and the phase of the K L o −K S o regeneration amplitude on carbon have been measured. In a momentum range of 16–40 GeV/ c the phase is constant within experimental error bars and coincides with the regeneration phase on hydrogen. Both the modulus and the phase of the regeneration amplitude on carbon are in agreement with optical model predictions.
ASSUMING A CONSTANT PHASE INDEPENDENT OF MOMENTUM, THE CARBON REGENERATION AMPLITUDE HAS A PHASE OF -130 +- 17 DEG.
The measurements of the transmission regeneration amplitude on hydrogen in the momentum region of 14–42 GeV/ c indicate that in accordance with the Pomeranchuk theorem its magnitude |ƒ° − ƒ °|/k decreases as energy increases and its phase is approximately constant and equal to arg (ƒ° − ƒ °) = (−118 ± 13)° .
THE REGENERATION AMPLITUDE DECREASES OVER THIS ENERGY RANGE.
None
No description provided.
The K L K S transmission regeneration of a K L beam traversing a liquid hydrogen target has been observed over the momentum interval 3.0–6.0 GeV/ c . Results are in good agreement with predictions based on dispersion relations.
Regeneration amplitude.
No description provided.
Elastic and inelastic K L S regenerative scattering on copper and lead nuclei have been observed up to a momentum transfer of 0.17 GeV/ c . The elastic differential cross-section is of a ”diffractive” type. It can be described successfully in terms of an optical model only assuming an appreciable neutron excess in the vicinity of the nuclear surface.
No description provided.
No description provided.
The interference between K L → π + π - and K S → π + π - behind a copper regenerator has been observed in a high statistics experiment. The modulus and the argument of the complex ratio ϱ ( p )/ η +- , where ϱ ( p ) is the regeneration amplitude and η +- = A ( K L → π + π - )/ A (K S → π + π - ) has been measured over the momentum interval from 2.0 GeV/ c to 6.0 GeV/ c . The phase of η +- as deduced from this measurement and from the optical model value of arg [ ϱ ( p )] is 49.3° ± 6.8°. The K L K S mass difference has been found to be Δm/ h ̵ = (0.555 ± 0.020) × 10 10 sec −1 .
No description provided.