Date

Accessing the deuteron source with pion-deuteron femtoscopy in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV

The ALICE collaboration Acharya, Shreyasi ; Agarwal, Apar ; Aglieri Rinella, Gianluca ; et al.
Phys.Rev.C 112 (2025) 064003, 2025.
Inspire Record 2907579 DOI 10.17182/hepdata.166737

Femtoscopy of non-identical particle pairs has been instrumental for precision measurements of both two-particle sources and the final-state interactions in high-energy elementary and heavy-ion collisions. The majority of measurements assessing the source properties are based on identical particle pairs, providing direct access to the characteristics of the single-particle source. The work in this paper demonstrates, via femtoscopy measurements of charged pion-deuteron pairs in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV, the feasibility of accessing the characteristics of the single-particle femtoscopic source by using particle pairs with large mass differences such as pions and deuterons. The first experimental results of the measurement of deuteron source sizes in ultrarelativistic heavy-ion collisions are presented. The results show good agreement with the trend derived from other charged hadrons such as pions, kaons, and protons as a function of transverse mass, indicating similar source properties

24 data tables

pion-deuteron (same charge) correlation function for centrality 0-10% from Pb-Pb collisions at 5020 GeV

pion-deuteron (same charge) correlation function for centrality 10-30% from Pb-Pb collisions at 5020 GeV

pion-deuteron (same charge) correlation function for centrality 30-50% from Pb-Pb collisions at 5020 GeV

More…

Revealing the microscopic mechanism of deuteron formation at the LHC

The ALICE collaboration Acharya, S. ; Agarwal, A. ; Aglieri Rinella, G. ; et al.
Nature 648 (2025) 306-311, 2025.
Inspire Record 2907586 DOI 10.17182/hepdata.165804

The formation of light (anti)nuclei with mass number A of a few units (e.g., d, $^3$He, and $^4$He) in high-energy hadronic collisions presents a longstanding mystery in nuclear physics [1,2]. It is not clear how nuclei bound by a few MeV can emerge in environments characterized by temperatures above 100 MeV [3-5], about 100,000 times hotter than the center of the Sun. Despite extensive studies, this question remained unanswered. The ALICE Collaboration now addresses it with a novel approach using deuteron-pion momentum correlations in proton-proton (pp) collisions at the Large Hadron Collider (LHC). Our results provide model-independent evidence that about 80% of the observed (anti)deuterons are produced in nuclear fusion reactions [6] following the decay of short-lived resonances, such as the $\Delta (1232)$. These findings resolve a crucial gap in our understanding of nucleosynthesis in hadronic collisions. Beyond answering the fundamental question on how nuclei are formed in hadronic collisions, the results can be employed in the modeling of the production of light and heavy nuclei in cosmic rays [7] and dark matter decays [8,9].

7 data tables

Measured $\pi^{+}$–d$\oplus\pi^{-}$–$\overline{\mathrm{d}}$ (left panel) correlation function.

Measured $\pi^{-}$–d$\oplus\pi^{+}$–$\overline{\mathrm{d}}$ (right panel) correlation function.

The extracted kinetic decoupling temperature is derived from $\pi^{+}$–d correlation functions.

More…

Measurement of charged hadron multiplicity in Au+Au collisions at $\sqrt{\text{s}_{\text{NN}}} = 200$ GeV with the sPHENIX detector

The sPHENIX collaboration Abdulhamid, M.I. ; Acharya, U. ; Adams, E.R. ; et al.
2025.
Inspire Record 2907537 DOI 10.17182/hepdata.159879

The pseudorapidity distribution of charged hadrons produced in Au+Au collisions at a center-of-mass energy of $\sqrt{s_\mathrm{NN}} = 200$ GeV is measured using data collected by the sPHENIX detector. Charged hadron yields are extracted by counting cluster pairs in the inner and outer layers of the Intermediate Silicon Tracker, with corrections applied for detector acceptance, reconstruction efficiency, combinatorial pairs, and contributions from secondary decays. The measured distributions cover $|\eta| < 1.1$ across various centralities, and the average pseudorapidity density of charged hadrons at mid-rapidity is compared to predictions from Monte Carlo heavy-ion event generators. This result, featuring full azimuthal coverage at mid-rapidity, is consistent with previous experimental measurements at the Relativistic Heavy Ion Collider, thereby supporting the broader sPHENIX physics program.

2 data tables

Nch, Npart, and Nch/(Npart/2) values in Table 4, presented in Figure 6.

Nch as a function of $\eta$, presented in Figure 5.


Measurement of the transverse energy density in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV with the sPHENIX detector

The sPHENIX collaboration Abdulhamid, M.I. ; Acharya, U. ; Adams, E.R. ; et al.
Phys.Rev.C 112 (2025) 024908, 2025.
Inspire Record 2907573 DOI 10.17182/hepdata.159889

This paper reports measurements of the transverse energy per unit pseudorapidity ($dE_{T}/dη$) produced in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV, performed with the sPHENIX detector at the Relativistic Heavy Ion Collider (RHIC). The results cover the pseudorapidity range $\left|η\right| < 1.1$ and constitute the first such measurement performed using a hadronic calorimeter at RHIC. Measurements of $dE_{T}/dη$ are presented for a range of centrality intervals and the average $dE_{T}/dη$ as a function of the number of participating nucleons, $N_{\mathrm{part}}$, is compared to a variety of Monte Carlo heavy-ion event generators. The results are in agreement with previous measurements at RHIC, and feature an improved granularity in $η$ and improved precision in low-$N_{\mathrm{part}}$ events.

10 data tables

An example of a reconstructed EMCal di-cluster invariant mass distribution, similar to those used for in situ EMCal tower calibrations. The distributions are made from EMCal cluster pairs using Run 2024 Au+Au data. The prominent peak arises from $\pi^{0}\to\gamma\gamma$ decays.

An example of a reconstructed EMCal di-cluster invariant mass distribution, similar to those used for in situ EMCal tower calibrations. The distributions are made from EMCal cluster pairs using a GEANT-4 simulation of HIJING events. The prominent peak arises from $\pi^{0}\to\gamma\gamma$ decays.

An example of the measured energy distribution in a single OHCal tower, showing the MIP distribution from cosmic-ray data from the detector.

More…

Multiplicity-dependent inclusive J/$\psi$ production at forward rapidity in pp collisions at $\mathbf{\sqrt{s} = 13}$ TeV

The ALICE collaboration Acharya, Shreyasi ; Agarwal, Apar ; Aglieri Rinella, Gianluca ; et al.
JHEP 07 (2025) 238, 2025.
Inspire Record 2906995 DOI 10.17182/hepdata.159409

This paper presents a study of the inclusive forward $J/ψ$ yield as a function of forward charged-particle multiplicity in pp collisions at $\sqrt{s} =13$ TeV using data collected by the ALICE experiment at the CERN LHC. The results are presented in terms of relative $J/ψ$ yields and relative charged-particle multiplicities with respect to these quantities obtained in inelastic collisions having at least one charged particle in the pseudorapidity range $|η| < 1$. The $J/ψ$ mesons are reconstructed via their decay into $μ^+ μ^-$ pairs in the forward rapidity region ($2.5 < y < 4$). The relative multiplicity is estimated in the forward pseudorapidity range which overlaps with the $J/ψ$ rapidity region. The results show a steeper-than-linear increase of the $J/ψ$ yields versus the multiplicity. They are compared with previous measurements and theoretical model calculations.

1 data table

Forward inclusive J/$\psi$ relative yield as a function of the relative multiplicity in −3.7 < $\eta$ < −1.7 in INEL > 0 pp collisions at $\sqrt{s}$ = 13 TeV.


First measurement of D$^{*+}$ vector spin alignment in Pb-Pb collisions at $\mathbf{\sqrt{s_{\rm NN}} = 5.02}$ TeV

The ALICE collaboration Acharya, Shreyasi ; Agarwal, Apar ; Aglieri Rinella, Gianluca ; et al.
JHEP 10 (2025) 094, 2025.
Inspire Record 2906994 DOI 10.17182/hepdata.165763

The first measurement of prompt D$^{*+}$-meson spin alignment in ultrarelativistic heavy-ion collisions with respect to the direction orthogonal to the reaction plane is presented. The spin alignment is quantified by measuring the element $ρ_{00}$ of the diagonal spin-density matrix for prompt D$^{*+}$ mesons with $4<p_{\rm T}<30$ GeV/$c$ in two rapidity intervals, $|y|<0.3$ and $0.3<|y|<0.8$, in central ($0-10$%) and midcentral ($30-50$%) Pb$-$Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV. Evidence of spin alignment $ρ_{00}>1/3$ has been found for $p_{\rm T}>15$ GeV/$c$ and $0.3<|y|<0.8$ with a significance of $3.1σ$. The measured spin alignment of prompt D$^{*+}$ mesons is compared with the one of inclusive J$/ψ$ mesons measured at forward rapidity ($2.5 < y < 4$).

3 data tables

$\rho_{00}$ of prompt D$^{*\pm}$ mesons as a function of transverse momentum ($p_{\rm T}$) in the rapidity interval $0.0 < |y| < 0.3$ for mid-central (30--50\%) Pb--Pb collisions at $\sqrt{s_{\rm NN}}=5.02~TeV$.

$\rho_{00}$ of prompt D$^{*\pm}$ mesons as a function of transverse momentum ($p_{\rm T}$) in the rapidity interval $0.3 < |y| < 0.8$ for mid-central (30--50\%) Pb--Pb collisions at $\sqrt{s_{\rm NN}}=5.02~TeV$.

$\rho_{00}$ of prompt D$^{*\pm}$ mesons as a function of transverse momentum ($p_{\rm T}$) in the rapidity interval $0.0 < |y| < 0.3$ for central (0--10\%) Pb--Pb collisions at $\sqrt{s_{\rm NN}}=5.02~TeV$.


Evidence for the collective nature of radial flow in Pb+Pb collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
CERN-EP-2025-068, 2025.
Inspire Record 2907010 DOI 10.17182/hepdata.158359

Anisotropic flow and radial flow are two key probes of the expansion dynamics and properties of the quark-gluon plasma (QGP). While anisotropic flow has been extensively studied, radial flow, which governs the system's radial expansion, has received less attention. Notably, experimental evidence for the global and collective nature of radial flow has been lacking. This Letter presents the first measurement of transverse momentum ($p_{\mathrm{T}}$) dependence of radial flow fluctuations ($v_0(p_{\mathrm{T}})$) over $0.5<p_{\mathrm{T}}<10$ GeV, using a two-particle correlation method in Pb+Pb collisions at $\sqrt{s_{\mathrm{NN}}}=5.02$ TeV. The data reveal three key features supporting the collective nature of radial flow: long-range correlation in pseudorapidity, factorization in $p_{\mathrm{T}}$, and centrality-independent shape in $p_{\mathrm{T}}$. The comparison with a hydrodynamic model demonstrates the sensitivity of $v_0(p_{\mathrm{T}})$ to bulk viscosity, a crucial transport property of the QGP. These findings establish a new, powerful tool for probing collective dynamics and properties of the QGP.

99 data tables

Data from Figure 2, panel a, $v_{0}$

Data from Figure 2, panel c, upper panel, Normalized Covariance $\times 10^{3}$ in 0-5% Centrality

Data from Figure 2, panel c, lower panel, Normalized Covariance $\times 10^{3}$ in 50-60% Centrality

More…

Search for electroweak production of vector-like leptons in $\tau$-lepton and $b$-jet final states in $pp$ collisions at $\sqrt{s}$ = 13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
Eur.Phys.J.C 85 (2025) 1335, 2025.
Inspire Record 2905977 DOI 10.17182/hepdata.158820

A search for pair-production of vector-like leptons is presented, considering their decays into a third-generation Standard Model (SM) quark and a vector leptoquark ($U_1$) as predicted by an ultraviolet-complete extension of the SM, referred to as the '4321' model. Given the assumed decay of $U_1$ into third-generation SM fermions, the final state can contain multiple $τ$-leptons and $b$-quarks. This search is based on a dataset of $pp$ collisions at $\sqrt{s}=13$ TeV recorded with the ATLAS detector during Run 2 of the Large Hadron Collider, corresponding to an integrated luminosity of up to 140 fb$^{-1}$. No significant excess above the SM background prediction is observed, and 95% confidence level limits on the cross-section times branching ratio are derived as a function of the vector-like lepton mass. A lower observed (expected) limit of 910 GeV (970 GeV) is set on the vector-like lepton mass. Additionally, the results are interpreted for a supersymmetric model with an $R$-parity violating coupling to the third-generation quarks and leptons. Lower observed (expected) limits are obtained on the higgsino mass at 880 GeV (940 GeV) and on the wino mass at 1170 GeV (1170 GeV).

8 data tables

Observed (solid line with markers) and expected (dashed line) 95&percnt; CL upper limits on the VLL pair production cross-section (&sigma;<sub>VLL</sub>) times branching ratio (BR) to third generation quarks and leptons as a function of m<sub>VLL</sub>. The limits presented in black lines are obtained after combining all five signal regions. The inner green (outer yellow) band corresponds to the &plusmn;1 &sigma; (&plusmn;2 &sigma;) uncertainty around the combined expected limit. The 95&percnt; CL expected upper limits in the three individual channels (1&tau;<sub>had</sub> &ge;3b MST, 1&tau;<sub>had</sub> &ge;3b BJET and &ge;2&tau;<sub>had</sub> &ge;3b MSDT) are shown for comparison. The solid red line represents the theory prediction of the VLL pair production cross-section at NLO in QCD.

Observed (solid line with markers) and expected (dashed line) 95&percnt; CL upper limits on the higgsino pair production cross-section (&sigma;<sub>higgsino</sub>) times branching ratio (BR) to third generation quarks and leptons as a function of m<sub>higgsino</sub>. The limits presented in black lines are obtained after combining all five signal regions. The inner green (outer yellow) band corresponds to the &plusmn;1 &sigma; (&plusmn;2 &sigma;) uncertainty around the combined expected limit. The 95&percnt; CL expected upper limits in the three individual channels (1&tau;<sub>had</sub> &ge;3b MST, 1&tau;<sub>had</sub> &ge;3b BJET and &ge;2&tau;<sub>had</sub> &ge;3b MSDT) are shown for comparison. The solid red line represents the theory prediction of the higgsino pair production cross-section at NLO in QCD.

Observed (solid line with markers) and expected (dashed line) 95&percnt; CL upper limits on the wino pair production cross-section (&sigma;<sub>wino</sub>) times branching ratio (BR) to third generation quarks and leptons as a function of m<sub>wino</sub>. The limits presented in black lines are obtained after combining all five signal regions. The surrounding inner green (outer yellow) band corresponds to the &plusmn;1 &sigma; (&plusmn;2 &sigma;) uncertainty around the combined expected limit. The 95&percnt; CL expected upper limits in the three individual channels (1&tau;<sub>had</sub> &ge;3b MST, 1&tau;<sub>had</sub> &ge;3b BJET and &ge;2&tau;<sub>had</sub> &ge;3b MSDT) are shown for comparison. The solid red line represents the theory prediction of the wino pair production cross-section at NLO in QCD.

More…

Search for events with one displaced vertex from long-lived neutral particles decaying into hadronic jets in the ATLAS muon spectrometer in $pp$ collisions at $\sqrt{s}=13$ TeV

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
Phys.Rev.D 112 (2025) 092001, 2025.
Inspire Record 2905251 DOI 10.17182/hepdata.158373

A search for events with one displaced vertex from long-lived particles using data collected by the ATLAS detector at the Large Hadron Collider is presented, using 140 fb$^{-1}$ of proton-proton collision data at $\sqrt{s} = 13$ TeV recorded in 2015-2018. The search employs techniques for reconstructing vertices of long-lived particles decaying into hadronic jets in the muon spectrometer displaced between 3 m and 14 m from the primary interaction vertex. The observed number of events is consistent with the expected background and limits for several benchmark signals are determined. A scalar-portal model and a Higgs-boson-portal baryogenesis model are considered. A dedicated analysis channel is employed to target Z-boson associated long-lived particle production, including an axion-like particle and a dark photon model. For the Higgs boson model, branching fractions above 1% are excluded at 95% confidence level for long-lived particle proper decay lengths ranging from 5 cm to 40 m. For the photo-phobic axion-like particle model considered, this search produces the strongest limits to date for proper decay lengths greater than $\mathcal{O}(10)$ cm.

309 data tables

Summary of the one-DV limits for the H/ϕ arrow ss model. Comparison between observed and expected 95% CL limits on (σ/σggH)×B for an SM-like Higgs boson portal mediator and ms=35 GeV. The observed limits are consistent with the expected ones within the uncertainties.

Observed 95% CL limits on (σ/σggH)×B for all Higgs boson portal mediator samples where the cross-section is normalized to the SM Higgs boson gluon–gluon fusion production cross-section, σggH = 48.61 pb [97]. The observed limits are consistent with the expected ones within the uncertainties.

Observed 95% CL limits on σ×B for mϕ≠ 125 GeV. The observed limits are consistent with the expected ones within the uncertainties.

More…

Measurements of the production cross-sections of a Higgs boson in association with a vector boson and decaying into $WW^\ast$ with the ATLAS detector at $\sqrt{s} = 13$ TeV

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
JHEP 08 (2025) 034, 2025.
Inspire Record 2905253 DOI 10.17182/hepdata.157861

Measurements of the total and differential Higgs boson production cross-sections, via $WH$ and $ZH$ associated production using $H\rightarrow WW^\ast\rightarrow\ellν\ellν$ and $H\rightarrow WW^\ast\rightarrow\ellνjj$ decays, are presented. The analysis uses proton-proton events delivered by the Large Hadron Collider at a centre-of-mass energy of 13 TeV and recorded by the ATLAS detector between 2015 and 2018. The data correspond to an integrated luminosity of 140 fb$^{-1}$. The sum of the $WH$ and $ZH$ cross-sections times the $H\rightarrow WW^\ast$ branching fraction is measured to be $0.44^{+0.10}_{-0.09}$ (stat.) $^{+0.06}_{-0.05}$ (syst.) pb, in agreement with the Standard Model prediction. Higgs boson production is further characterised through measurements of the differential cross-section as a function of the transverse momentum of the vector boson and in the framework of Simplified Template Cross-Sections.

12 data tables

Post-fit distribution of $ANN_{Zdom}$ in the Z-dominated SR. The post-fit result is obtained from the combined 2-POI fit described in section 9.1 of the paper.

Best-fit values of the total $WH$, $ZH$, and $VH$ cross sections times the $H\rightarrow WW^{*}$ branching ratio.

Observed profile likelihood as a function of $\sigma\times\mathcal{B}_{H\rightarrow WW^{*}}$ normalised by the SM expectation for the $VH$ and $WH/ZH$ measurements from the combined 1- and 2-POI fits, respectively

More…