We present a systematic analysis of the production of K ∗+ (892) and Δ ++ (1236) resonances in the K + p → K 0 p π + reaction at 5, 8.25 and 16 GeV/ c . We have measured total cross sections, differential cross sections, density matrix elements and examined resonance production mechanisms in terms of the exchange of states with definite naturality. Some results on the reaction K + p → K ∗+ (1420) p are also given.
No description provided.
No description provided.
No description provided.
From the reaction π−n→pπ−π−π0 at 9.140 GeV/c the Δ0ϱ− reaction has been selected. The upper limit in the cross-section ofμb
A SMALL CORRECTION FOR THE DEL0 TAIL IS NOT PERFORMED.
No description provided.
No description provided.
A comparison is made of the low-mass three-meson systems (πππ), (Kππ), (π K K ) and ( K K K ) diffractively produced in the reaction meson + proton → three mesons + proton. Several striking similarities and a few important differences are observed: (i) the reactions are consistent with the assumption that the three mesons decay entirely into a 0 − meson and a 0 + , 1 − or 2 + resonance; (ii) the three-meson mass spectra have a peak ≈ 250 MeV above the effective threshold M eff of the dominant decay mode and then fall off approximately as (mass) −3 ;(iii) the average spin 〈 J 〉 = 0.55 + 1.1 Q eff , where Q eff = M - M eff ; (iv) the average orbital angular momentum 〈 l 〉 increases according to 〈 l 〉 = 0.75 Q eff ; (v) the three-meson states are produced dominantly in unnatural spin-parity states and no evidence for their being resonant is found; (vi) the only natural spin-parity states found are the well-established 2 + resonances A 2 and K ∗ (1420); they have similar properties to the non-resonant unnatural parity states except for a dip at t = 0 in the dσ/d t distributions; (vii) both the unnatural and natural spin-parity states are produced mostly by an exchange of natural parity; (viii) there is evidence for two types of production mechanism with different polarization properties, one approximately conserving helicity in the t -channel and the other in the s -channel.
No description provided.
A partial-wave analysis has been performed on the (K − π − π + ) system produced in the reaction K − p → K − π − π + p at 10 and 16 GeV/ c . In the Q mass region it is found that the two dominant states, K ∗ π and Kπ, both in 1 + S wave, are produced with different polarisations, helicity being approximately conserved in the t -channel for K ∗ π and in the s -channel for Kπ. This is in contradiction with the assumption that the amplitude can be factorised into “production” and “decay” parts, and hence that the two amplitudes are fully coherent. The phase variation of the two states do not indicate simple resonance behaviour. It is concluded that the Q-mass enhancement is composite.
No description provided.
No description provided.
The differential cross section d σ d t′ for the charge-exchange process π + p → π 0 ( π + p) at 8, 16 and 23 GeV/ c is presented for several regions of the π + p effective mass. It is found that the dip at t ′ ≈ 0.6 (GeV/ c ) 2 which is observed in the Δ(1236) mass band becomes a less pronounced structure in the higher mass regions. However, while the slope of the d σ d t′ distributions in the near-forward direction decreases strongly with increasing π + p mass, there is no evidence that the observed structure moves to higher values of t ′ as the π + p mass increases. These results are consistent with a Regge-exchange picture where the position of the dip is determined by the exchanged trajectory, but are inconsistent with a simple geometrical picture.
TP DEPENDENCE FOR FOUR <PI+ P> MASS INTERVALS.
We have investigated the pp elastic scattering at the CERN Intersecting Storage Rings (ISR). We report results for centre-of-mass scattering angles between 30 and 100 mrad and for centre-of-mass energies of 23.5,30.7, 44.9 and 53 GeV. The elastic differential cross-section shows a diffraction-like shape with a sharp minimum at about t = −1.4 GeV 2 .
No description provided.
No description provided.
No description provided.