Results on polarization in π − p and π + p forward elastic scattering at 10, 14 and 17.5 GeV/ c are presented.
No description provided.
No description provided.
No description provided.
Data on the polarization parameter in pp elastic scattering in the | t |-range from ∼0.1 to ∼ 2.9 (GeV/ c ) 2 and at 10, 14 and 17.5 GeV/ c are presented.
No description provided.
No description provided.
No description provided.
Results on polarization in K − p, K + p and p̄p forward elastic scattering at 10 and 14 GeV/ c are presented.
No description provided.
No description provided.
No description provided.
Elastic scattering of linearly polarized photons on protons has been measured between 3.2 and 3.7 GeV for four-momentum transfers ranging from −0.1 to −0.7 (GeV/ c ) 2 . The observed cross section asymmetry in this range is consistent with zero within ±0.05.
No description provided.
Measurements of multiple particle production at ADONE, the Frascati e + e − storage ring, have been carried out at C.M. energies 1.4 GeV to 2.4 GeV. The hadronic nature of the observed particles is discussed and a lower limit of 30 nbarn set for the total multiparticle cross section.
LOWER LIMIT FOR PRODUCTION OF AT LEAST TWO CHARGED HADRONS.
Total and differential elastic Σ ± p scattering cross sections have been measured in the momentum interval of 130–180 MeV/ c . From the Σ ± p total cross section allowed regions for the singlet and triplet scattering lengths are derived, applying the effective range approximation.
No description provided.
No description provided.
Proton Compton scattering has been measured in a coincidence experiment at photon energies between 2.2 and 7 GeV and four-momentum transfers t between −0.06 and −0.85(GeV/ c ) 2 . For ∣ t ∣ ⩽ 0.4 (GeV/ c ) 2 fits of the form d σ /d t = ( A · exp( Bt )) yield forward cross sections A in good agreement with the values calculated from the total hadronic γ p cross section via the optical theorem and the forward dispersion relation. The slopes B do not show a significant energy dependence, the mean value being 5.7 ± 0.4 (GeV/ c ) −2 . The cross section is substantially larger than predicted by the vector-meson dominance model.
No description provided.
No description provided.
No description provided.
The t -dependence of the differential cross-section for elastic neutron-proton charge exchange scattering has been measured at 8, 19.2 and 24 GeV/ c . The extremely narrow peak in the forward direction, previously observed for momenta up to 8 GeV/ c , presists at the higher momenta, and the t -dependence shows practically no change with energy. Approximate values of the absolute cross-section were also determined for these momenta.
No description provided.
No description provided.
No description provided.
Substantial production of the resonances ϱ, f and ω has been observed in this reaction. In contrast with the channel p p → 2π + 2π − , associated production of resonances was found to occur. The behaviour of the associated production of ω-mesons with other resonances is shown to be consistent with some very simple assumptions. Alternative methods of displaying data for p p → ππω are discussed; it is shown that the longitudinal phase plot for this reaction is unlike that obtained for any previously reported reaction. Reasonable agreement for the behaviour of this channel is found with the multiperipheral model of Chan, Łoskiewicz and Allison.
STATISTICAL ERRORS ONLY. FOR MULTIPLE PI0 PRODUCTION, RESULTS ARE MODEL DEPENDENT.
ANALYSIS OF 5PION FINAL STATE. DISTRIBUTION FITTED WITH FIXED MASS AND WIDTH RESONANCES, THEN ONLY EVENTS ABOVE (FITTED) BACKGROUND TAKEN. CROSS SECTIONS CALCULATED BY PDG (COMPILATION PDG3).
Joint decay distributions have been studied in the reaction K + p → K ∗o (1420)Δ ++ at 5.0 GeV/ c in the transversity spin reference frame. Two alternative spin-parity assignments 2 + and 3 − for the K ∗ resonance have been considered and a comparison with the quark-model predictions has been made. The predictions of the quark model are equally well satisfied by the experimental results for both the 2 + and 3 − spin-parity assignments.
No description provided.