We have observed the π+π− decay of the ρ′(1600) in the production reaction γp→ρ′p at 20 GeV. Using a calculation which takes into account the interference of the ρ′ with the ρ(770) and a Drell background, we find good evidence that this resonance is a radial excitation of the ρ(770). The background interference strongly distorts the angular distributions predicted by a purely s-channel helicity-conserving production mechanism. We measure m0=(1.55±0.07) GeV/c2 and Γ0=(0.28−0.08+0.03) GeV/c2.
SLOPE VARIATION WITH M(PI+ PI-) IN THE RANGE 0.4 TO 2.5 GEV.
No description provided.
No description provided.
Proton-antiproton elastic scattering at CM energy 540 GeV has been studied in the t -range 0.04 < − t < 0.45 GeV 2 . The data are well fitted by the form exp ( bt ) with b = 17.1 ± 1.0 GeV −2 for | t | = 0.04 − 0.18 GeV su 2 and b = 13.7 ± 0.2 ± 0.2 GeV −2 for | t | = 0.21−0.45 GeV 2 . A luminosity measurement combined with the optical theorem gives σ tot = 67.6 ± 5.9 ± 2.7 mb and σ e1 / σ tot = 0.209 ± 0.018 ± 0.008.
No description provided.
No description provided.
ELASTIC RATIO ASSUMES RHO=0.
3roton-antiproton elastic scattering at cm energy 540 GeV has been studied in the t range 0.14 ⩽ − t ⩽ 0.26 GeV 2 . The data is well fitted by an exponential form exp( bt ) with b = 13.3 ± 1.5 GeV −2 .
Elastic Differentiaol Cross Section (545 events). DATA REQUESTED 21 FEB 1983. Data read from plot in paper (29 JAN 2015).
No description provided.
Measurements of the photoproduction processes γρ→ρ+n and γρ→ρ-Δ++ (1236) are reported in the energy range 2.8 to 4.8 GeV. The data show shrinkage of the differential cross section in this energy region for the process γρ→ρ-Δ++ (1236); no shrinkage is observed for the ρ+n process. The energy dependences of the ρ+n and ρ-Δ++ (1236) total cross sections are much steeper than current model prediction. The ρ spin density matrices for each process are also presented.
No description provided.
SLOPE AND INTERCEPT OF D(SIG)/DT.
No description provided.
We have studied the reaction p↑p→nΔ++ at 6 GeV/c incident momentum in which the incident protons are 60% transversely polarized. The experiment used the Argonne National Laboratory Zero Gradient Synchrotron polarized beam and the 12-foot hydrogen bubble chamber. We report on about 6000 Δ++ events, with the Δ++ produced in the backward hemisphere in the c.m. system. Spin-density matrix elements as a function of momentum transfer are presented and small beam-polarization-induced effects are described.
BACKWARD-PRODUCED DEL++ HAS HALF THIS CROSS SECTION.
TWO EXPONENTIAL FITS: D(SIG)/DT HAS CHANGE OF SLOPE AT ABOUT -T OF 0.1 GEV**2.
No description provided.
The s and t dependence of φ (1019) photoproduction has been investigated in the incident photon energy range 2.8 to to 4.8 GeV. Differential cross-sections and density matrix elements are presented for a t range extending from t min out to −1.3 (GeV/ c ) 2 . The results are discussed in terms discussed in terms of an effective Regge trajectory in the t -channel.
DIFFERENTIAL CROSS SECTIONS AVERAGED OVER TWO RANGES OF INCIDENT PHOTON ENERGY.
VARIATION OF SMALL -T DIFFERENTIAL CROSS SECTION WITH PHOTON ENERGY.
INTERCEPT AND SLOPE FROM FITS TO D(SIG)/DT AT SMALL -T.
Final states produced by charged baryon exchange in π − p interactions at 12 GeV/ c laboratory momentum have been studied. Forward neutrons with momenta determined by a calorimeter to be greater than 8.5 ± 1.4 GeV/ c triggered the SLAC 40-inch hydrogen bubble chamber which operated at a 10 Hz expansion rate. We report data on the reactions π − p→n π − π + , π − p→n π − π + π 0 , and π − p→n π − π − π + π + . In π − n π − p→n π + , production of ϱ and f mesons is observed. Differential cross sections are derived and compared with data at lower incident momentum and with theoretical models. In π − p→n π − π + π 0 , ω production is observed with a differential cross section having a deep near u ′= 0.2 (GeV/ c ) 2 . In π − p→n π − π − π + π + , Δ − , ϱ and f production is observed . The observed mass distributions appear to indicate the production of wide resonaces decaying into ϱππ. Some evidence for ϱ-ω interference is also observed.
No description provided.
No description provided.
CORRECTED FOR BACKGROUND.
In a sample of 108 563 pictures taken with the Fermilab 30-inch hydrogen bubble chamber, exposed to a 360-GeV/c π− beam, we have observed 19 453 interactions in a selected fiducial region. The observed charged multiplicity distribution has been corrected for the effects of scan efficiency, errors in prong count, missed close-in vees, secondary interactions, and neutron stars and for Dalitz pairs. The two-prong events have been corrected for losses at low −t. The total cross section is measured to be 25.25 ± 0.35 mb, and the elastic cross section is 3.61 ± 0.11 mb with an exponential slope of (8.82 ± 0.30) (GeV/c)−2. The average charged-particle multiplicity for inelastic events is 8.73 ± 0.04, and the second moment f2 is measured to be 9.83 ± 0.23.
SYSTEMATIC CORRECTIONS INCLUDED IN ERRORS.
FROM FIT, FORWARD D(SIG)/DT = 31.84 +- 0.68 MB/GEV**2, AND AGREES WITH OPTICAL POINT FROM MEASURED TOTAL CROSS SECTIONS.
Using a high statistics sample of K − p interactions at 4.2 GeV/ c , the production and decay properties of the Ξ ∗ (1820) are discussed. The mass and width are found to be M = (1823 ± 2) MeV and Γ = (21 ± 7) MeV. Evidence is found for Ξ ∗ (2030) in the Σ K ̄ channel and for a new Ξ ∗ at a mass of 2120 MeV in the ΛK − channel.
XI(1820)- PRODUCTION CROSS SECTIONS ARE FOR -UP < 3 GEV**2 AND ARE CORRECTED FOR ISOSPIN AND UNSEEN DECAY MODES.
No description provided.
A partial wave analysis of the K 0 π + π − system produced in the charge exchange reaction K − p → ( K 0 π + π − ) n at 4.2 GeV/ c has been performed both as a function of Kππ mass and of t ′. The 1 + S wave forms the largest contribution to the K ππ system and peaks at roughly the same mass as the Q in diffractive K ππ production. The polarization properties of the 1 + S ( K ∗ π) and 1 + S (Kϱ) waves differ fromt those of the diffractive 1 + wave. There is some evidence for a resonance contribution to 1 + S ( K ∗ π) . The strong 2 + wave the K ∗ (1420) and the K ϱ/ K ∗ ϱ decay branching ratio determined to be 0.36±0.10. An enhancement with spin-parity 1 − is observed under K ∗ (1420) .
CROSS SECTION CORRECTED FOR BREIT-WIGNER TAILS, THE TP CUT, UNSEEN <AK0 PI> AND <K RHO> DECAY MODES. BRANCHING RATIO K*(1420) --> <K RHO>/<K* PI> = 0.36 +- 0.10.
No description provided.