p-p Interactions at 2 Bev. 1. Single-Pion Production

Fickinger, W.J. ; Pickup, E. ; Robinson, D.K. ; et al.
Phys.Rev. 125 (1962) 2082-2090, 1962.
Inspire Record 46669 DOI 10.17182/hepdata.26851

3600 two-pronged events, obtained in p−p interactions at 2 Bev in the BNL 20-in. hydrogen bubble chamber, have been analyzed. Cross sections have been measured for elastic scattering, for the two modes of single-pion production, p+p→p+n+π+, p+p→p+p+π0, and for strange-particle production. The branching ratio for the two one-pion production reactions is σ(pnπ+)σ(ppπ0)=4.17±0.25. Momentum distributions and Q values indicate that single-pion production proceeds almost entirely through the (32, 32) resonant state. The data have been considered in terms of the extended isobar model and also a one-pion exchange model for production. The branching ratio and momentum distributions can be explained by including a small effect from the I=12 resonant state in addition to the dominant I=32 resonance. The c.m. angular distribution of the nucleons in single-pion production shows very marked backward-forward peaking indicating a one-pion exchange mechanism. Absolute differential cross sections as a function of laboratory kinetic energy have been calculated from Selleri's equation for the pnπ+ reaction. There is good agreement with the data for low four-momentum transfers [q2<0.15(Bev/c)2], but for higher momentum transfers the theoretical cross sections are larger than the experimental cross sections.

1 data table match query

No description provided.


Version 2
Measurement of the total cross section and $\rho$-parameter from elastic scattering in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
Eur.Phys.J.C 83 (2023) 441, 2023.
Inspire Record 2122408 DOI 10.17182/hepdata.128017

In a special run of the LHC with $\beta^\star = 2.5~$km, proton-proton elastic-scattering events were recorded at $\sqrt{s} = 13~$TeV with an integrated luminosity of $340~\mu \textrm{b}^{-1}$ using the ALFA subdetector of ATLAS in 2016. The elastic cross section was measured differentially in the Mandelstam $t$ variable in the range from $-t = 2.5 \cdot 10^{-4}~$GeV$^{2}$ to $-t = 0.46~$GeV$^{2}$ using 6.9 million elastic-scattering candidates. This paper presents measurements of the total cross section $\sigma_{\textrm{tot}}$, parameters of the nuclear slope, and the $\rho$-parameter defined as the ratio of the real part to the imaginary part of the elastic-scattering amplitude in the limit $t \rightarrow 0$. These parameters are determined from a fit to the differential elastic cross section using the optical theorem and different parameterizations of the $t$-dependence. The results for $\sigma_{\textrm{tot}}$ and $\rho$ are \begin{equation*} \sigma_{\textrm{tot}}(pp\rightarrow X) = \mbox{104.7} \pm 1.1 \; \mbox{mb} , \; \; \; \rho = \mbox{0.098} \pm 0.011 . \end{equation*} The uncertainty in $\sigma_{\textrm{tot}}$ is dominated by the luminosity measurement, and in $\rho$ by imperfect knowledge of the detector alignment and by modelling of the nuclear amplitude.

22 data tables match query

The measured total cross section. The systematic uncertainty includes experimental and theoretical uncerainties.

The measured total cross section. The systematic uncertainty includes experimental and theoretical uncerainties.

The rho-parameter, i.e. the ratio of the real to imaginary part of the elastic scattering amplitude extrapolated to t=0. The systematic uncertainty includes experimental and theoretical uncerainties.

More…

Multiplicity of Charged Particles in 800-{GeV} $p p$ Interactions

The LEBC-MPS collaboration Ammar, R. ; Aziz, T. ; Banerjee, S. ; et al.
Phys.Lett.B 178 (1986) 124-128, 1986.
Inspire Record 231133 DOI 10.17182/hepdata.6558

Results are reported concerning the charged-particle multiplicity distribution obtained in an exposure of the high-resolution hydrogen bubble chamber LEBC to a beam of 800 GeV protons at the Fermilab MPS. This is the first time that such data have been available at this energy. The distribution of the number n ch of charged particles produced in inelastic interactions obeys KNO-scaling. The average multiplicity is 〈 n ch 〉 = 10.26±0.15. For n ch ⩾8 the data can be well fitted to a negative binomial. The difference between the overall experimental multiplicity distribution and that resulting from the latter fit is in agreement with the contribution expected from diffractive processes.

1 data table match query

No description provided.