None
No description provided.
No description provided.
No description provided.
None
THE AVERAGE PHASE IS -130.9 +- 2.7 DEG (NO EXPLICIT MOMENTUM DEPENDENCE). USING ABS(ETA+-) = 2.3*10**-3.
REGENERATION AMPLITUDE ASSUMING MOMENTUM INDEPENDENT CONSTANT PHASE.
CROSS SECTION DIFFERENCES ASSUMING MOMENTUM INDEPENDENT CONSTANT PHASE.
Proton-proton elastic scattering has been measured in the region 4.9<|t|<12.1 GeV2 at a beam momentum of 201 GeV/c. If the form exp(At) is fitted to the data, the exponent A gradually changes from 1.5 to 0.9 GeV−2 over our t range. The data are consistent with the form exp(−6.6p⊥). A comparison with intersecting storage ring results shows that in this kinematical region the slopes are about the same, but dσdt at fixed t is still dropping with energy.
7904 ELASTIC EVENTS.
1030 ELASTIC EVENTS.
The production of neutral kaons in the reaction K + p → K n + X is studied at the incident momentum of 32 GeV/ c . Inclusive cross sections and single-particle distributions are presented and compared with the data at lower energies. The total inclusive cross section amounts to 7.9 ± 0.3 mb at 32 GeV/ c and is significantly higher than at lower energies due to the rapid rise of multikaon production. The fraction of K n 's coming from the decay of the K ∗ resonances stays roughly constant with energy between 8.2 and 32 GeV/ c . In the central and beam fragmentation regions the single-particle distributions reveal no energy dependence between the 16 and 32 GeV/ c data in contrast with the behaviour at lower energies, while in the proton fragmentation region the data are compatible with the trend observed at lower energies and with theoretical expectations.
No description provided.
No description provided.
No description provided.
The cross sections for the line-reversed reaction pairs K+n→K0p and K−p→K¯0n, and K+p→K0Δ++ and K−n→K¯0Δ− have been determined with high statistics and good relative normalization at 8.36 and 12.8 GeV/c in a spectrometer experiment at Stanford Linear Accelerator Center. The cross sections for the K+-induced reactions are larger than for the K−, contrary to the expectations of weakly-exchange-degenerate Regge-pole models. The ratio of the reaction cross sections is about the same as at lower energies and shows little change with momentum transfer.
Axis error includes +- 11/11 contribution.
Axis error includes +- 11/11 contribution.
Axis error includes +- 11/11 contribution.
We report measurements of the electroproduction of ϕ mesons from hydrogen at Q2 values of 0.23, 0.43, and 0.97 GeV2 with |t| varying from 0.125 to 1.3 GeV2 at each Q2 point. The data show no evidence for a Q2 dependence of the slope of the t distribution; the forward cross section falls with increasing Q2 as the square of the ϕ propagator; the decay angular distributions agree with the predictions of s-channel helicity conservation; and the ratio of the longitudinal to the transverse component increases linearly with Q2.
'DATA POINT ONE'.
'DATA POINT TWO'.
'DATA POINT THREE'. POOR STATISTICS - NOT IN PUBLISHED FIGURE.
We report on a study of the charge-exchange reaction pp → nΔ ++ (1232) at the CERN intersecting storage rings (ISR) in the energy range √ s = 23 to 53 GeV. From our analysis of the energy dependence of the total cross-section, of the differential cross-section d σ /d t and of the decay angular distributions we find evidence that pion exchange is dominant up to √ s = 23 GeV and that ( ϱ +A 2 ) exchange dominates the reaction for √ s ⩾ 30 GeV, as described by simple Regge-pole models.
THE ERRORS ARE DUE TO STATISTICAL ERRORS AND BACKGROUND SUBTRACTION ERRORS COMBINED IN QUADRATURE.
THE ERRORS ARE DUE TO STATISTICAL ERRORS AND BACKGROUND SUBTRACTION ERRORS COMBINED IN QUADRATURE.
No description provided.
Measurements were made of the differential cross sections for the charge exchange of K − mesons on protons at momenta of 25 and 40 GeV/ c using a high-precision spectrometer with no magnetic field. In the range 5–40 GeV/ c the reaction cross section follows a power-law dependence p K − −1.52 . In the snall momentum transfer region (− t ⪅ m π 2 ) a minimum is observed, similar to that discovered at lower energies. The differential cross sections t = 0 are considerably less than those predicted by the Regge-pole model. The parameters of the effective trajectory are determined.
.
.
Differential cross sections have been measured in the region of small forward angles (between 0 and ∼40 mrad) for the elastic scattering reactions pp → pp at 4.2, 7.0 and 10.0 GeV /c and p p → p p at 4.2, 6.0, 8.0 and 10.0 GeV /c . The maximum momentum transfer is ∼0.025 GeV 2 at the lowest and ∼0.10 GeV/c at the highest incident momentum. Values of the slope and the real part of the forward scattering amplitude of the above reactions have been derived; the values obtained are in good agreement with dispersion relations.
No description provided.
No description provided.
No description provided.
The reactions K − d→ Σ − p, K − d→ Σ − (1385)p, K − d→ Λ (1405)n and K − d→ Λ (1520)n have been studied at K − momenta between 686 and 844 MeV/ c in an experiment with the 81 cm Saclay bubble chamber at CERN. About 630 000 pictures have been analyzed. Partial and differential cross sections are presented. A one-nucleon-exchange model is used to extract the kaon-nucleon-hyperon coupling constants from these results. For g( K N Σ(1197)), g( K N Σ(1385)) and g( K N Λ(1405)) we find values which are compatible with the SU(3) predictions. The coupling constant g( K N Λ(1520)) obtained by our method agrees with that determined from the partial decay width for Λ(1520)→ K N .
CROSS SECTIONS FROM FITTING WITH BREIT-WIGNER DISTRIBUTIONS AND SMOOTH BACKGROUND.
CROSS SECTION WITH A T-CUT.
CROSS SECTION WITH A T-CUT.