Date

Collaboration Reset

Subject_areas

The Influence of Fragmentation Models on the Determination of the Strong Coupling Constant in $e^+ e^-$ Annihilation Into Hadrons

The CELLO collaboration Behrend, H.J. ; Chen, C. ; Fenner, H. ; et al.
Nucl.Phys.B 218 (1983) 269-288, 1983.
Inspire Record 179447 DOI 10.17182/hepdata.8172

Hadronic events obtained with the CELLO detector at PETRA were compared with first-order QCD predictions using two different models for the fragmentation of quarks and gluons, the Hoyer model and the Lund model. Both models are in reasonable agreement with the data, although they do not completely reproduce the details of many distributions. Several methods have been applied to determine the strong coupling constant α S . Although within one model the value of α S varies by 20% among the different methods, the values determined using the Lund model are 30% or more larger (depending on the method used) than the values determined with the Hoyer model. Our results using the Hoyer model are in agreement with previous results based on this approach.

3 data tables match query

DATA CORRECTED WITH HOYER MODEL (ALPHA-S=0.15).

DATA CORRECTED WITH LUND MODEL (ALPHA-S=0.25).

No description provided.


Search for New Heavy Quarks in $e^+ e^-$ Collisions Up to 46.78-{GeV} Center-of-mass Energy

The CELLO collaboration Behrend, H.J. ; Burger, J. ; Criegee, L. ; et al.
Phys.Lett.B 144 (1984) 297-301, 1984.
Inspire Record 202783 DOI 10.17182/hepdata.30514

The total e + e − annihilation onto hadron has been measured at CM energies between 33.00 and 36.72 GeV and between 38.66 and 46.78 GeV in steps of 20 and 30 MeV respectively. The average of the ratio R = σ ( e + e − → hadrons )/ σ is 〈 R 〉=3.85±0.12 and 〈 R 〉=4.04±0.10 for the two energy ranges. The systematic error on 〈 R 〉 is 0.31. Both values are consistent with the expectation for the known coloured quarks u, d, s, c and b. No evidence was found for the production of new quarks. If the largest fluctuation in R is interpreted as a narrow resonance, it corresponds to a product of the electronic width and the hadronic branching ratio Γ ee B had >2.9 keV at the 95% confidence level, well below the value expected for the toponium vector ground state with charge 2 3 e . The observed number of aplanar final states rules out the continuum production of a a new heavy flavour with pointlike cross section up to a CM energy of 45.4 GeV for a quarck charge of 1 3 e . and up to 46.6 GeV for 2 3 e at the 95% confidence level.

2 data tables match query

ENERGY SCANS IN 20(30) MEV STEPS.

No description provided.


Limits on Spin 0 Bosons in $e^+ e^-$ Annihilation Up to 45.2-{GeV} Center-of-mass Energy

The CELLO collaboration Behrend, H.J. ; Burger, J. ; Criegee, L. ; et al.
Phys.Lett.B 140 (1984) 130-136, 1984.
Inspire Record 199851 DOI 10.17182/hepdata.30547

We have studied the reactions e + e − → e + e − , e + e − → γγ , e + e − → μ + μ − , and e + e − → τ + τ − in the centre-of-mass (CM) energy range from 39.8 to 45.2 GeV using the CELLO detector at PETRA. Upper limits on the partial widths for new spin 0 bosons with masses both within and above the energy range covered are determined. No evidence for contributions of such new particles has been observed up to the highest PETRA energies in a model independent way. Under the assumptions of recently suggested models relating the existence of spin 0 bosons to the radiative width Γ τ of the Z 0 we exclude such bosons at the 95% confidence level for masses below the Z 0 -mass if Γ τ > 20 MeV.

2 data tables match query

No description provided.

Figure actually gives the 95 PCT CL upper limits of the coupling constants for each process as a function of the mass of the intermediate spin zero boson.


A Measurement of the Muon Pair Production in $e^+ e^-$ Annihilation at 38.3-{GeV} $\le \sqrt{s} \le$ 46.8-{GeV}

The CELLO collaboration Behrend, H.J. ; Burger, J. ; Criegee, L. ; et al.
Phys.Lett.B 191 (1987) 209-216, 1987.
Inspire Record 244835 DOI 10.17182/hepdata.30180

The e + e − → μ + μ − reaction has been studied at centre of mass energies ranging between 38.3 abd 46.8 GeV with the CELLO detector at PETRA. We present results on the cross section and the charge asymmetry for this channel. Combining all the data at the average energy 〈 s 〉=43 GeV we obtain R μμ =〈 σ μμ / σ 0 〉=0.98±0.04±0.04, 〈 A μμ 〉=(−14.1±3.7±1.0)%, where σ 0 is the QED cross section and A μμ is the charge asymmetry corrected for pure radiative effects. These results are in good agreement with the expected values of R μμ =1.01 and A μμ =−14.5% at that energy.

3 data tables match query

Mu-pair cross sections.

Corrected angular distributions with data sample divided into two energy regions with means 39 and 44 GeV and total energy region.

Forward-backward asymmetry.


Determination of alpha-s and sin**2theta(w) from Measurements of the Total Hadronic Cross-Section in e+ e- Annihilation

The CELLO collaboration Behrend, H.J. ; Burger, J. ; Criegee, L. ; et al.
Phys.Lett.B 183 (1987) 400-411, 1987.
Inspire Record 236981 DOI 10.17182/hepdata.30231

We have measured the total normalized cross section R for the process e + e − → hadrons at centre-of-mass energies between 14.0 and 46.8 GeV based on an integrated luminosity of 60.3 pb −1 . The data are well described by the standard SU(3) c ⊗SU(2) L ⊗U(1) model with the production of the five known quarks. No open production of a sixth quark with charge 2/3 or 1/3 occurs below a centre-of-mass energy of 46.6 or 46.3 GeV, respectively. A fitting procedure which takes the correlations between measurements into account was used to determine the electroweak mixing angle sin 2 θ w and the strong coupling constant α s ( S ) in second-order QCD. We applied this procedure to the CELLO data and in addition included the data from other experiments at PETRA and PEP. Both fits give consistent results. The fit to the combined data yields α s (34 2 GeV 2 ) = 0.165±0.030, and sin 2 θ w = 0.236±0.020. Fixing sin 2 θ w at the world average value of 0.23 yields α s (34 2 GeV 2 ) = 0.169±0.025.

2 data tables match query

No description provided.

No description provided.


Experimental Study of the Hadronic Photon Structure Function

The CELLO collaboration Behrend, H.J. ; Fenner, H. ; Gumpel, U. ; et al.
Phys.Lett.B 126 (1983) 391-397, 1983.
Inspire Record 198110 DOI 10.17182/hepdata.30720

We have measured at PETRA the process e γ → e + hadrons at an average Q 2 value of 9 GeV 2 / c 2 . The total number of observed events attributed to this process is 215. Our data are compared to calculations based on the estimation of the photon structure function F 2 in the quark parton model and in QCD.

1 data table match query

No description provided.


Investigation of Two Photon Final States in $e^+ e^-$ Annihilation at $\sqrt{s}=34$.2-{GeV}

The CELLO collaboration Behrend, H.J. ; Chen, C. ; Fenner, H. ; et al.
Phys.Lett.B 123 (1983) 127-132, 1983.
Inspire Record 182585 DOI 10.17182/hepdata.30780

Two photon final states in e + e − annihilation have been analyzed at CM energies around 34 GeV. Good agreement with QED is observed. Lower limits for the QED cutoff parameters of Λ + > 59 GeV and Λ - > 44 GeV are determined. A search for two photons with missing energy yields an upper limit for the production of neutral particles which decay into a photon and a non-interacting particle. Constraints on the mass and the coupling strength of supersymmetric photinos are discussed.

2 data tables match query

Cross section for ABS(cos(theta)) <0.85.

No description provided.


An Analysis of the Charged and Neutral Energy Flow in $e^+ e^-$ Hadronic Annihilation at 34-{GeV}, and a Determination of the {QCD} Effective Coupling Constant

The CELLO collaboration Behrend, H.J. ; Chen, C. ; Fenner, H. ; et al.
Phys.Lett.B 113 (1982) 427-432, 1982.
Inspire Record 177228 DOI 10.17182/hepdata.30921

Using both charged and neutral components, 2600 multihadronic e + e − annihilation events, recorded at 34 GeV by the CELLO detector at PETRA, have been analysed in a calometric approach. The fraction of energy carried by gamma rays is measured to be f γ = (26.0 ± 0.4 (stat) ± 4.0 (syst)%. The neutral energy flow is seen to follow closely the overall energy flow. From the corrected oblateness distribution, a first order determination of α s is performed. The result is α s = 0.16 ± 0.01 (stat) ± 0.03 (syst).

1 data table match query

No description provided.


Coupling Strengths of Weak Neutral Currents From Leptonic Final States at 22-{GeV} and 34-{GeV}

The CELLO collaboration Behrend, H.J. ; Chen, C. ; Fenner, H. ; et al.
Z.Phys.C 16 (1983) 301, 1983.
Inspire Record 180756 DOI 10.17182/hepdata.16385

Differential cross sections fore+e−→e+e−, τ+, τ- measured with the CELLO detector at\(\left\langle {\sqrt s } \right\rangle= 34.2GeV\) have been analyzed for electroweak contributions. Vector and axial vector coupling constants were obtained in a simultaneous fit to the three differential cross sections assuming a universal weak interaction for the charged leptons. The results,v2=−0.12±0.33 anda2=1.22±0.47, are in good agreement with predictions from the standardSU(2)×U(1) model for\(\sin ^2 \theta _w= 0.228\). Combining this result with neutrino-electron scattering data gives a unique axial vector dominated solution for the leptonic weak couplings. Assuming the validity of the standard model, a value of\(\sin ^2 \theta _w= 0.21_{ - 0.09}^{ + 0.14}\) is obtained for the electroweak mixing angle. Additional vector currents are not observed (C<0.031 is obtained at the 95% C.L.).

2 data tables match query

No description provided.

Combined MU and TAU asymmetry. See PL 114B(1982)282 (<a href=http://durpdg.dur.ac.uk/scripts/reacsearch.csh/TESTREAC/red+1234> RED = 1234 </a>) and ZP C14(1982)283 (<a href=http://durpdg.dur.ac.uk/scripts/reacsearch.csh/TESTREAC/red+1245> RED = 1245 </a>) for individual asymmetry measurements.


Measurement of Inclusive $\gamma$ and $\pi^0$ Spectra and a Comparison of the Neutral and Charged Components in Hadronic Events in $e^+ e^-$ Annihilation at 34-{GeV}

The CELLO collaboration Behrend, H.J. ; Chen, C. ; Fenner, H. ; et al.
Z.Phys.C 14 (1982) 189, 1982.
Inspire Record 177212 DOI 10.17182/hepdata.16411

The photonic part of multihadronice+e− annihilation events has been analyzed at a c.m. energy of 34 GeV. The photonic energy fraction per event is determined to befγ=0.251±0.003 (stat.) ±0.04 (syste.). The neutral and charged components of the events are analyzed separately revealing close similarity in thrust axis directions and momentum distributions in agreement with the hypothesis that most photons result from π0 decay. π0's are reconstructed separately and used to determine the inclusive cross section. Comparing these cross sections with lower energy data from SPEAR we find some indication for scaling violation.

2 data tables match query

No description provided.

No description provided.