The production of N ∗ (1400) isobar in the reaction pp → pN ∗+ (1400), where N ∗ (1400) → n π + and p π 0 , is investigated with the aid of one-pion exchange model. The one-pion exchange mechanism does not seem to dominate the production process. The isospin of N ∗ (1400) is found to be I = 1 2 , and the elasticity of the resonance is estimated to be 0.66.
Axis error includes +- 0.0/0.0 contribution (?////Due to fitting mass spectrum).
Complete angular distributions for the reactions p p → π − π + and other two meson states at 2.3 GeV/ c are presented. The extraordinary π − π + angular distribution is contrasted with the other final states and the predictions of simple models. A favourable comparison is made with the qualitative features of a dual model involving high mass meson states with a strong degeneracy with respect to I -spin.
SOME ANGULAR DISTRIBUTIONS ALSO PRESENTED.
K* NEUTRAL TO CHARGED PRODUCTION RATIO.
We give new experimental results on ρω interference and two-body cross sections in p¯p annihilation at 2.3GeVc. These are used, together with ρω interference results from lower energies, to argue that the annihilation process is not mediated by discrete s-channel mesonic resonances in the mass range 2.1-2.6 GeV.
No description provided.
From 2728 events of 205-GeV pp interactions found in 15 000 pictures taken with the 30-in. hydrogen bubble chamber at the National Accelerator Laboratory, a total cross section of 39.5±1.1 mb was measured. The mean charged-particle multiplicity for inelastic pp collisions was measured to be 7.65±0.17. The prong distribution from 2 to 22 prongs is broader than a Poisson distribution and has a width parameter f2−=〈n−(n−−1)〉−〈n−〉2=0.95±0.21.
No description provided.
Results from the study of reactions (1) K−d→K−π−π+d and (2) K−d→K−π−π+nps at 7.3 GeV/c are presented. The interactions are dominated by the production of K*(890), ρ(765), Q(1200−1450), and D*(2200) in (1) and Δ−(1236) in (2). Observation of ρ(765) and its possible source as a misidentified K*(890) is discussed. Evidence is observed of splitting of the Q into two resonances with masses and widths (in MeV) M1=1228±21, Γ1=111±33, M2=1414±15, and Γ2=89±24, L(1775) is observed in (1). An off-shell one-pion-exchange-model calculation is compared to (2). Cross sections and branching ratios of the Q resonances are estimated on the basis of the model.
Q (OR K(A)) CROSS SECTIONS MODEL-DEPENDENT WITH BACKGROUND UNSUBTRACTED.
High statistics data on p p annihilation into five and more pions at 2.32 GeV/ c are presented. Cross sections for various final states and for the production of meson resonances have been determined. The Dalitz plot asymmetry for some 4 800 ω decay events produced in p p → 2π + 2π − π 0 is found to be consistent with zero. Upper limits for the production of exotic meson resonances are presented.
No description provided.
The Λ-proton elastic scattering cross section has been measured between 1 and 17 GeV/c in a bubble chamber experiment. These are the first measurements of the elastic cross section for pΛ>5 GeV/c. The Λ's were produced by 25-GeV/c proton interactions in a platinum target. The cross section falls from 22 to 4 mb over the region. No significant polarization is observed.
No description provided.
CORRECTION MADE FOR KL P --> KS P.
Inclusive and semi-inclusive ρ 0 production are studied in 205 GeV/ c pp interactions. The number of ρ 0 per inelastic event is 0.33 ± 0.06, so that (13 ± 2)% of the π − are products of ϱ 0 decay. The ρ 0 are found to be produced mainly near y = 0 and tend to have larger average transverse momentum than do pions.
No description provided.
No description provided.
No description provided.
An analysis of a data sample of 1296 events of the reaction p p → K + K − π + π − at 2.32 GeV/ c is presented. The reaction cross section is 300 ± 20 μb . A number of tests of C conservation were made with careful attention to possible systematic errors, yielding no clear evidence of C violation. Various quasi two-body and quasi three-body final states contributing to this reaction were studied. The final state φπ + π − appears to be produced via a Zweig's rule violating mechanism. An analysis of the quasi three-body final state, K ∗0 K − π + (with K ∗0 → K + π − ) plus charge conjugate, whose cross section is 84 ± 12 μ b, is given. The properties of this final state are compared with expectations based on a simple baryon exchange model, and poor agreement is found. A quark model allows a successful qualitative interpretation of the properties of this three-body final state.
INCOHERENT BREIT-WIGNER PLUS PHASE SPACE FIT TO RESONANCE MASS SPECTRA. THE EQUAL CROSS SECTIONS FOR CHARGE CONJUGATE FINAL STATES ARE NOT TABULATED.
The cross sections for the line-reversed reaction pairs K+n→K0p and K−p→K¯0n, and K+p→K0Δ++ and K−n→K¯0Δ− have been determined with high statistics and good relative normalization at 8.36 and 12.8 GeV/c in a spectrometer experiment at Stanford Linear Accelerator Center. The cross sections for the K+-induced reactions are larger than for the K−, contrary to the expectations of weakly-exchange-degenerate Regge-pole models. The ratio of the reaction cross sections is about the same as at lower energies and shows little change with momentum transfer.
Axis error includes +- 11/11 contribution.
Axis error includes +- 11/11 contribution.
Axis error includes +- 11/11 contribution.