Date

Version 2
Search for long-lived, massive particles in events with displaced vertices and multiple jets in $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 06 (2023) 200, 2023.
Inspire Record 2628398 DOI 10.17182/hepdata.137762

A search for long-lived particles decaying into hadrons is presented. The analysis uses 139 fb$^{-1}$ of $pp$ collision data collected at $\sqrt{s} = 13$ TeV by the ATLAS detector at the LHC using events that contain multiple energetic jets and a displaced vertex. The search employs dedicated reconstruction techniques that significantly increase the sensitivity to long-lived particles decaying in the ATLAS inner detector. Background estimates for Standard Model processes and instrumental effects are extracted from data. The observed event yields are compatible with those expected from background processes. The results are used to set limits at 95% confidence level on model-independent cross sections for processes beyond the Standard Model, and on scenarios with pair-production of supersymmetric particles with long-lived electroweakinos that decay via a small $R$-parity-violating coupling. The pair-production of electroweakinos with masses below 1.5 TeV is excluded for mean proper lifetimes in the range from 0.03 ns to 1 ns. When produced in the decay of $m(\tilde{g})=2.4$ TeV gluinos, electroweakinos with $m(\tilde\chi^0_1)=1.5$ TeV are excluded with lifetimes in the range of 0.02 ns to 4 ns.

96 data tables

<b>Tables of Yields:</b> <a href="?table=validation_regions_yields_highpt_SR">Validation Regions Summary Yields, High-pT jet selections</a> <a href="?table=validation_regions_yields_trackless_SR">Validiation Regions Summary Yields, Trackless jet selections</a> <a href="?table=yields_highpt_SR_observed">Signal region (and sidebands) observed yields, High-pT jet selections</a> <a href="?table=yields_highpt_SR_expected">Signal region (and sidebands) expected yields, High-pT jet selections</a> <a href="?table=yields_trackless_SR_observed">Signal region (and sidebands) observed yields, Trackless jet selections</a> <a href="?table=yields_trackless_SR_expected">Signal region (and sidebands) expected yields, Trackless jet selections</a> <b>Exclusion Contours:</b> <a href="?table=excl_ewk_exp_nominal">EWK RPV signal; expected, nominal</a> <a href="?table=excl_ewk_exp_up">EWK RPV signal; expected, $+1\sigma$</a> <a href="?table=excl_ewk_exp_down">EWK RPV signal; expected, $-1\sigma$</a> <a href="?table=excl_ewk_obs_nominal">EWK RPV signal; observed, nominal</a> <a href="?table=excl_ewk_obs_up">EWK RPV signal; observed, $+1\sigma$</a> <a href="?table=excl_ewk_obs_down">EWK RPV signal; observed, $-1\sigma$</a> <a href="?table=excl_strong_mgluino_2400_GeV_exp_nominal">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; expected, nominal</a> <a href="?table=excl_strong_mgluino_2400_GeV_exp_up">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; expected, $+1\sigma$</a> <a href="?table=excl_strong_mgluino_2400_GeV_exp_down">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; expected, $-1\sigma$</a> <a href="?table=excl_strong_mgluino_2400_GeV_obs_nominal">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; observed, nominal</a> <a href="?table=excl_strong_mgluino_2400_GeV_obs_up">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; observed, $+1\sigma$</a> <a href="?table=excl_strong_mgluino_2400_GeV_obs_down">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; observed, $-1\sigma$</a> <a href="?table=excl_xsec_ewk">EWK RPV signal; cross-section limits for fixed lifetime values.</a> <a href="?table=excl_xsec_strong_mgluino_2400">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; cross-section limits for fixed lifetime values.</a> <a href="?table=excl_strong_mgluino_2000_GeV_exp_nominal">Strong RPV signal, m($\tilde{g}$)=2.0 TeV; expected, nominal</a> <a href="?table=excl_strong_mgluino_2000_GeV_exp_up">Strong RPV signal, m($\tilde{g}$)=2.0 TeV; expected, $+1\sigma$</a> <a href="?table=excl_strong_mgluino_2000_GeV_exp_down">Strong RPV signal, m($\tilde{g}$)=2.0 TeV; expected, $-1\sigma$</a> <a href="?table=excl_strong_mgluino_2000_GeV_obs_nominal">Strong RPV signal, m($\tilde{g}$)=2.0 TeV; observed, nominal</a> <a href="?table=excl_strong_mgluino_2000_GeV_obs_up">Strong RPV signal, m($\tilde{g}$)=2.0 TeV; observed, $+1\sigma$</a> <a href="?table=excl_strong_mgluino_2000_GeV_obs_down">Strong RPV signal, m($\tilde{g}$)=2.0 TeV; observed, $-1\sigma$</a> <a href="?table=excl_strong_mgluino_2200_GeV_exp_nominal">Strong RPV signal, m($\tilde{g}$)=2.2 TeV; expected, nominal</a> <a href="?table=excl_strong_mgluino_2200_GeV_exp_up">Strong RPV signal, m($\tilde{g}$)=2.2 TeV; expected, $+1\sigma$</a> <a href="?table=excl_strong_mgluino_2200_GeV_exp_down">Strong RPV signal, m($\tilde{g}$)=2.2 TeV; expected, $-1\sigma$</a> <a href="?table=excl_strong_mgluino_2200_GeV_obs_nominal">Strong RPV signal, m($\tilde{g}$)=2.2 TeV; observed, nominal</a> <a href="?table=excl_strong_mgluino_2200_GeV_obs_up">Strong RPV signal, m($\tilde{g}$)=2.2 TeV; observed, $+1\sigma$</a> <a href="?table=excl_strong_mgluino_2200_GeV_obs_down">Strong RPV signal, m($\tilde{g}$)=2.2 TeV; observed, $-1\sigma$</a> <a href="?table=excl_strong_mchi0_50_GeV_exp_nominal">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.1 TeV; expected, nominal</a> <a href="?table=excl_strong_mchi0_50_GeV_exp_up">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.1 TeV; expected, $+1\sigma$</a> <a href="?table=excl_strong_mchi0_50_GeV_exp_down">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.1 TeV; expected, $-1\sigma$</a> <a href="?table=excl_strong_mchi0_50_GeV_obs_nominal">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.1 TeV; observed, nominal</a> <a href="?table=excl_strong_mchi0_50_GeV_obs_up">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.1 TeV; observed, $+1\sigma$</a> <a href="?table=excl_strong_mchi0_50_GeV_obs_down">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.1 TeV; observed, $-1\sigma$</a> <a href="?table=excl_strong_mchi0_450_GeV_exp_nominal">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.5 TeV; expected, nominal</a> <a href="?table=excl_strong_mchi0_450_GeV_exp_up">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.5 TeV; expected, $+1\sigma$</a> <a href="?table=excl_strong_mchi0_450_GeV_exp_down">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.5 TeV; expected, $-1\sigma$</a> <a href="?table=excl_strong_mchi0_450_GeV_obs_nominal">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.5 TeV; observed, nominal</a> <a href="?table=excl_strong_mchi0_450_GeV_obs_up">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.5 TeV; observed, $+1\sigma$</a> <a href="?table=excl_strong_mchi0_450_GeV_obs_down">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.5 TeV; observed, $-1\sigma$</a> <a href="?table=excl_strong_tau_0p01_ns_exp_nominal">Strong RPV signal, $\tau$=0.01 ns; expected, nominal</a> <a href="?table=excl_strong_tau_0p01_ns_exp_up">Strong RPV signal, $\tau$=0.01 ns; expected, $+1\sigma$</a> <a href="?table=excl_strong_tau_0p01_ns_exp_down">Strong RPV signal, $\tau$=0.01 ns; expected, $-1\sigma$</a> <a href="?table=excl_strong_tau_0p01_ns_obs_nominal">Strong RPV signal, $\tau$=0.01 ns; observed, nominal</a> <a href="?table=excl_strong_tau_0p01_ns_obs_up">Strong RPV signal, $\tau$=0.01 ns; observed, $+1\sigma$</a> <a href="?table=excl_strong_tau_0p01_ns_obs_down">Strong RPV signal, $\tau$=0.01 ns; observed, $-1\sigma$</a> <a href="?table=excl_strong_tau_0p1_ns_exp_nominal">Strong RPV signal, $\tau$=0.10 ns; expected, nominal</a> <a href="?table=excl_strong_tau_0p1_ns_exp_up">Strong RPV signal, $\tau$=0.10 ns; expected, $+1\sigma$</a> <a href="?table=excl_strong_tau_0p1_ns_exp_down">Strong RPV signal, $\tau$=0.10 ns; expected, $-1\sigma$</a> <a href="?table=excl_strong_tau_0p1_ns_obs_nominal">Strong RPV signal, $\tau$=0.10 ns; observed, nominal</a> <a href="?table=excl_strong_tau_0p1_ns_obs_up">Strong RPV signal, $\tau$=0.10 ns; observed, $+1\sigma$</a> <a href="?table=excl_strong_tau_0p1_ns_obs_down">Strong RPV signal, $\tau$=0.10 ns; observed, $-1\sigma$</a> <a href="?table=excl_strong_tau_1_ns_exp_nominal">Strong RPV signal, $\tau$=1.00 ns; expected, nominal</a> <a href="?table=excl_strong_tau_1_ns_exp_up">Strong RPV signal, $\tau$=1.00 ns; expected, $+1\sigma$</a> <a href="?table=excl_strong_tau_1_ns_exp_down">Strong RPV signal, $\tau$=1.00 ns; expected, $-1\sigma$</a> <a href="?table=excl_strong_tau_1_ns_obs_nominal">Strong RPV signal, $\tau$=1.00 ns; observed, nominal</a> <a href="?table=excl_strong_tau_1_ns_obs_up">Strong RPV signal, $\tau$=1.00 ns; observed, $+1\sigma$</a> <a href="?table=excl_strong_tau_1_ns_obs_down">Strong RPV signal, $\tau$=1.00 ns; observed, $-1\sigma$</a> <a href="?table=excl_strong_tau_10_ns_exp_nominal">Strong RPV signal, $\tau$=10.00 ns; expected, nominal</a> <a href="?table=excl_strong_tau_10_ns_exp_up">Strong RPV signal, $\tau$=10.00 ns; expected, $+1\sigma$</a> <a href="?table=excl_strong_tau_10_ns_exp_down">Strong RPV signal, $\tau$=10.00 ns; expected, $-1\sigma$</a> <a href="?table=excl_strong_tau_10_ns_obs_nominal">Strong RPV signal, $\tau$=10.00 ns; observed, nominal</a> <a href="?table=excl_strong_tau_10_ns_obs_up">Strong RPV signal, $\tau$=10.00 ns; observed, $+1\sigma$</a> <a href="?table=excl_strong_tau_10_ns_obs_down">Strong RPV signal, $\tau$=10.00 ns; observed, $-1\sigma$</a> <a href="?table=excl_xsec_strong_chi0_1250">Strong RPV signal, m($\tilde{\chi}^0_1$)=1.25 TeV; cross-section limits for fixed lifetime values.</a> <br/><b>Reinterpretation Material:</b> See the attached resource (purple button on the left) or directly <a href="https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2016-08/hepdata_info.pdf">this link</a> for information about acceptance definition and about how to use the efficiency histograms below. SLHA files are also available in the reource page of this HEPData record. <a href="?table=acceptance_highpt_strong"> Acceptance cutflow, High-pT SR, Strong production.</a> <a href="?table=acceptance_trackless_ewk"> Acceptance cutflow, Trackless SR, EWK production.</a> <a href="?table=acceptance_trackless_ewk_hf"> Acceptance cutflow, Trackless SR, EWK production with heavy-flavor.</a> <a href="?table=acceptance_highpt_ewk_hf"> Acceptance cutflow, Trackless SR, EWK production with heavy-flavor.</a> <a href="?table=event_efficiency_HighPt_R_1150_mm">Reinterpretation Material: Event-level Efficiency for HighPt SR selections, R &lt; 1150 mm</a> <a href="?table=event_efficiency_HighPt_R_1150_3870_mm">Reinterpretation Material: Event-level Efficiency for HighPt SR selections, R [1150, 3870] mm</a> <a href="?table=event_efficiency_HighPt_R_3870_mm">Reinterpretation Material: Event-level Efficiency for HighPt SR selections, R &gt; 3870 mm</a> <a href="?table=event_efficiency_Trackless_R_1150_mm">Reinterpretation Material: Event-level Efficiency for Trackless SR selections, R &lt; 1150 mm</a> <a href="?table=event_efficiency_Trackless_R_1150_3870_mm">Reinterpretation Material: Event-level Efficiency for Trackless SR selections, R [1150, 3870] mm</a> <a href="?table=event_efficiency_Trackless_R_3870_mm">Reinterpretation Material: Event-level Efficiency for Trackless SR selections, R &gt; 3870 mm</a> <a href="?table=vertex_efficiency_R_22_mm">Reinterpretation Material: Vertex-level Efficiency for R &lt; 22 mm</a> <a href="?table=vertex_efficiency_R_22_25_mm">Reinterpretation Material: Vertex-level Efficiency for R [22, 25] mm</a> <a href="?table=vertex_efficiency_R_25_29_mm">Reinterpretation Material: Vertex-level Efficiency for R [25, 29] mm</a> <a href="?table=vertex_efficiency_R_29_38_mm">Reinterpretation Material: Vertex-level Efficiency for R [29, 38] mm</a> <a href="?table=vertex_efficiency_R_38_46_mm">Reinterpretation Material: Vertex-level Efficiency for R [38, 46] mm</a> <a href="?table=vertex_efficiency_R_46_73_mm">Reinterpretation Material: Vertex-level Efficiency for R [46, 73] mm</a> <a href="?table=vertex_efficiency_R_73_84_mm">Reinterpretation Material: Vertex-level Efficiency for R [73, 84] mm</a> <a href="?table=vertex_efficiency_R_84_111_mm">Reinterpretation Material: Vertex-level Efficiency for R [84, 111] mm</a> <a href="?table=vertex_efficiency_R_111_120_mm">Reinterpretation Material: Vertex-level Efficiency for R [111, 120] mm</a> <a href="?table=vertex_efficiency_R_120_145_mm">Reinterpretation Material: Vertex-level Efficiency for R [120, 145] mm</a> <a href="?table=vertex_efficiency_R_145_180_mm">Reinterpretation Material: Vertex-level Efficiency for R [145, 180] mm</a> <a href="?table=vertex_efficiency_R_180_300_mm">Reinterpretation Material: Vertex-level Efficiency for R [180, 300] mm</a> <br/><b>Cutflow Tables:</b> <a href="?table=cutflow_highpt_strong"> Cutflow (Acceptance x Efficiency), High-pT SR, Strong production.</a> <a href="?table=cutflow_trackless_ewk"> Cutflow (Acceptance x Efficiency), Trackless SR, EWK production.</a> <a href="?table=cutflow_trackless_ewk_hf"> Cutflow (Acceptance x Efficiency), Trackless SR, EWK production with heavy-flavor quarks.</a> <a href="?table=cutflow_highpt_ewk_hf"> Cutflow (Acceptance x Efficiency), High-pT SR, EWK production with heavy-flavor quarks.</a>

Validation of background estimate in validation regions for the High-pT jet selections

Validation of background estimate in validation regions for the Trackless jet selections

More…

Search for new physics in the $\tau$ lepton plus missing transverse momentum final state in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, A. ; Adam, W. ; Andrejkovic, J.W. ; et al.
JHEP 09 (2023) 051, 2023.
Inspire Record 2626189 DOI 10.17182/hepdata.135472

A search for physics beyond the standard model (SM) in the final state with a hadronically decaying tau lepton and a neutrino is presented. This analysis is based on data recorded by the CMS experiment from proton-proton collisions at a center-of-mass energy of 13 TeV at the LHC, corresponding to a total integrated luminosity of 138 fb$^{=1}$. The transverse mass spectrum is analyzed for the presence of new physics. No significant deviation from the SM prediction is observed. Limits are set on the production cross section of a W' boson decaying into a tau lepton and a neutrino. Lower limits are set on the mass of the sequential SM-like heavy charged vector boson and the mass of a quantum black hole. Upper limits are placed on the couplings of a new boson to the SM fermions. Constraints are put on a nonuniversal gauge interaction model and an effective field theory model. For the first time, upper limits on the cross section of $t$-channel leptoquark (LQ) exchange are presented. These limits are translated into exclusion limits on the LQ mass and on its coupling in the $t$-channel. The sensitivity of this analysis extends into the parameter space of LQ models that attempt to explain the anomalies observed in B meson decays. The limits presented for the various interpretations are the most stringent to date. Additionally, a model-independent limit is provided.

15 data tables

The transverse mass distribution of $ au$ leptons and missing transverse momentum observed in the Run-2 data (black dots with statistical uncertainty) as well as the expectation from SM processes (stacked histograms). Different signal hypotheses normalized to 10 fb$^{-1}$ are illustrated as dashed lines for exemplary SSM W$\prime$ boson, QBH and EFT signal hypotheses. The ratios of the background-subtracted data yields to the expected background yields are presented in the lower panel. The combined statistical and systematic uncertainties in the background are represented by the grey shaded band in the ratio panel.

Bayesian upper exclusion limits at 95% CL on the product of the cross section and branching fraction of a W$\prime$ boson decaying to a $\tau$ lepton and a neutrino in the SSM model. For this model, W$\prime$ boson masses of up to 4.8 TeV can be excluded. The limit is given by the intersection of the observed (solid) limit and the theoretical cross section (blue dotted curve). The 68 and 95% quantiles of the limits are represented by the green and yellow bands, respectively. The $\sigma \mathcal{B}$ for an SSM W' boson, along with its associated uncertainty, calculated at NNLO precision in QCD is shown.

Bayesian 95% CL model-independent upper limit on the product of signal cross sections and branching fraction for the $\tau+\nu$ decay for a back-to-back $\tau$ lepton plus $p_{T}^{miss}$ topology. To calculate this limit, all events for signal, background, and data are summed starting from a minimum $m_{T}$ threshold and then divided by the total number of events. No assumption on signal shape is included in this limit. The expected (dashed line) and observed (solid line) limits are shown as well as the 68% and 95% CL uncertainty bands (green and yellow, respectively).

More…

Search for resonant and non-resonant Higgs boson pair production in the $b\bar b\tau^+\tau^-$ decay channel using 13 TeV $pp$ collision data from the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 07 (2023) 040, 2023.
Inspire Record 2155171 DOI 10.17182/hepdata.130794

A search for Higgs boson pair production in events with two $b$-jets and two $\tau$-leptons is presented, using a proton-proton collision dataset with an integrated luminosity of 139 fb$^{-1}$ collected at $\sqrt{s}=13$ TeV by the ATLAS experiment at the LHC. Higgs boson pairs produced non-resonantly or in the decay of a narrow scalar resonance in the mass range from 251 to 1600 GeV are targeted. Events in which at least one $\tau$-lepton decays hadronically are considered, and multivariate discriminants are used to reject the backgrounds. No significant excess of events above the expected background is observed in the non-resonant search. The largest excess in the resonant search is observed at a resonance mass of 1 TeV, with a local (global) significance of $3.1\sigma$ ($2.0\sigma$). Observed (expected) 95% confidence-level upper limits are set on the non-resonant Higgs boson pair-production cross-section at 4.7 (3.9) times the Standard Model prediction, assuming Standard Model kinematics, and on the resonant Higgs boson pair-production cross-section at between 21 and 900 fb (12 and 840 fb), depending on the mass of the narrow scalar resonance.

51 data tables

Breakdown of the relative contributions to the uncertainty in the extracted signal cross-sections, as determined in the likelihood fit (described in Section 8) to data. These are obtained by fixing the relevant nuisance parameters in the likelihood fit, and subtracting the obtained uncertainty on the fitted signal cross-sections in quadrature from the total uncertainty, and then dividing the result by the total uncertainty. The sum in quadrature of the individual components differs from the total uncertainty due to correlations between uncertainties in the different groups.

Post-fit expected number of signal and background events and observed number of data events in the last two bins of the non-resonant BDT score distribution of the SM signal after applying the selection criteria and requiring exactly 2 b-tagged jets and assuming a background-only hypothesis

Observed and expected upper limits at 95% CL on the cross-section of non-resonant HH production according to SM-like kinematics, and on the cross-section of non-resonant HH production divided by the SM prediction. The 1 sigma and 2 sigma variations around the expected limit are also shown.

More…

Version 2
Search for new phenomena in final states with photons, jets and missing transverse momentum in $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
JHEP 07 (2023) 021, 2023.
Inspire Record 2094882 DOI 10.17182/hepdata.115570

A search for new phenomena has been performed in final states with at least one isolated high-momentum photon, jets and missing transverse momentum in proton--proton collisions at a centre-of-mass energy of $\sqrt{s} = 13$ TeV. The data, collected by the ATLAS experiment at the CERN LHC, correspond to an integrated luminosity of 139 $fb^{-1}$. The experimental results are interpreted in a supersymmetric model in which pair-produced gluinos decay into neutralinos, which in turn decay into a gravitino, at least one photon, and jets. No significant deviations from the predictions of the Standard Model are observed. Upper limits are set on the visible cross section due to physics beyond the Standard Model, and lower limits are set on the masses of the gluinos and neutralinos, all at 95% confidence level. Visible cross sections greater than 0.022 fb are excluded and pair-produced gluinos with masses up to 2200 GeV are excluded for most of the NLSP masses investigated.

33 data tables

The observed and expected (post-fit) yields in the control and validation regions. The lower panel shows the difference in standard deviations between the observed and expected yields, considering both the systematic and statistical uncertainties on the background expectation.

Observed (points with error bars) and expected background (solid histograms) distributions for $E_{T}^{miss}$ in the signal region (a) SRL, (b) SRM and (c) SRH after the background-only fit applied to the CRs. The predicted signal distributions for the two models with a gluino mass of 2000 GeV and neutralino mass of 250 GeV (SRL), 1050 GeV (SRM) or 1950 GeV (SRH) are also shown for comparison. The uncertainties in the SM background are only statistical.

Observed (points with error bars) and expected background (solid histograms) distributions for $E_{T}^{miss}$ in the signal region (a) SRL, (b) SRM and (c) SRH after the background-only fit applied to the CRs. The predicted signal distributions for the two models with a gluino mass of 2000 GeV and neutralino mass of 250 GeV (SRL), 1050 GeV (SRM) or 1950 GeV (SRH) are also shown for comparison. The uncertainties in the SM background are only statistical.

More…

Search for a heavy resonance decaying into a top quark and a W boson in the lepton+jets final state at $\sqrt{s}$= 13 TeV

The CMS collaboration Tumasyan, A. ; Adam, W. ; Andrejkovic, J.W. ; et al.
JHEP 04 (2022) 048, 2022.
Inspire Record 1972089 DOI 10.17182/hepdata.114361

A search for a heavy resonance decaying into a top quark and a W boson in proton-proton collisions at $\sqrt{s} =$ 13 TeV is presented. The data analyzed were recorded with the CMS detector at the LHC and correspond to an integrated luminosity of 138 fb$^{-1}$. The top quark is reconstructed as a single jet and the W boson, from its decay into an electron or muon and the corresponding neutrino. A top quark tagging technique based on jet clustering with a variable distance parameter and simultaneous jet grooming is used to identify jets from the collimated top quark decay. The results are interpreted in the context of two benchmark models, where the heavy resonance is either an excited bottom quark b$^*$ or a vector-like quark B. A statistical combination with an earlier search by the CMS Collaboration in the all-hadronic final state is performed to place upper cross section limits on these two models. The new analysis extends the lower range of resonance mass probed from 1.4 down to 0.7 TeV. For left-handed, right-handed, and vector-like couplings, b$^*$ masses up to 3.0, 3.0, and 3.2 TeV are excluded at 95% confidence level, respectively. The observed upper limits represent the most stringent constraints on the b$^*$ model to date.

7 data tables

Distributions of MtW in the 1b category. The data are shown by filled markers, where the horizontal bars indicate the bin widths. The individual background contributions are given by filled histograms. The expected signal for a LH b* with mb∗ = 2.4 TeV is shown by a dashed line. The shaded region is the uncertainty in the total background estimate. The lower panel shows the ratio of data to the background estimate, with the total uncertainty on the predicted background displayed as the gray band.

Distributions of MtW in the 2b category. The data are shown by filled markers, where the horizontal bars indicate the bin widths. The individual background contributions are given by filled histograms. The expected signal for a LH b* with mb∗ = 2.4 TeV is shown by a dashed line. The shaded region is the uncertainty in the total background estimate. The lower panel shows the ratio of data to the background estimate, with the total uncertainty on the predicted background displayed as the gray band.

Upper limits on the production cross section times branching fraction of the b* LH hypothesis at a 95% CL. Dashed colored lines show the expected limits from the l+jets and all-hadronic channels, where the latter start at resonance masses of 1.4 TeV. The observed and expected limits from the combination are shown as solid and dashed black lines, respectively. The green and yellow bands show the 68 and 95% confidence intervals on the combined expected limits.

More…

Search for Quark Contact Interactions in Dijet Angular Distributions in pp Collisions at sqrt(s) = 7 TeV Measured with the ATLAS Detector

The ATLAS collaboration Aad, G. ; Abbott, B. ; Abdallah, J. ; et al.
Phys.Lett.B 694 (2011) 327-345, 2011.
Inspire Record 871487 DOI 10.17182/hepdata.57022

Dijet angular distributions from the first LHC pp collisions at center-of-mass energy sqrt(s) = 7 TeV have been measured with the ATLAS detector. The dataset used for this analysis represents an integrated luminosity of 3.1 pb-1. Dijet $\chi$ distributions and centrality ratios have been measured up to dijet masses of 2.8 TeV, and found to be in good agreement with Standard Model predictions. Analysis of the $\chi$ distributions excludes quark contact interactions with a compositeness scale $\Lambda$ below 3.4 TeV, at 95% confidence level, significantly exceeding previous limits.

5 data tables

CHI distribution for mass bin 340 to 520 GeV.

CHI distribution for mass bin 520 to 800 GeV.

CHI distribution for mass bin 800 to 1200 GeV.

More…

Search for New Particles in Two-Jet Final States in 7 TeV Proton-Proton Collisions with the ATLAS Detector at the LHC

The ATLAS collaboration Aad, G. ; Abbott, B. ; Abdallah, J. ; et al.
Phys.Rev.Lett. 105 (2010) 161801, 2010.
Inspire Record 865423 DOI 10.17182/hepdata.57036

A search for new heavy particles manifested as resonances in two-jet final states is presented. The data were produced in 7 TeV proton-proton collisions by the Large Hadron Collider (LHC) and correspond to an integrated luminosity of 315 nb^-1 collected by the ATLAS detector. No resonances were observed. Upper limits were set on the product of cross section and signal acceptance for excited-quark (q*) production as a function of q* mass. These exclude at the 95% CL the q* mass interval 0.30 < mq* < 1.26 TeV, extending the reach of previous experiments.

2 data tables

The dijet mass distribution (NUMBER OF EVENTS).

95 PCT CL upper limit of the cross section x acceptance.


Higher Moments of Net-proton Multiplicity Distributions at RHIC

The STAR collaboration Aggarwal, M.M. ; Ahammed, Z. ; Alakhverdyants, A.V. ; et al.
Phys.Rev.Lett. 105 (2010) 022302, 2010.
Inspire Record 853304 DOI 10.17182/hepdata.73344

We report the first measurements of the kurtosis (\kappa), skewness (S) and variance (\sigma^2) of net-proton multiplicity (N_p - N_pbar) distributions at midrapidity for Au+Au collisions at \sqrt(s_NN) = 19.6, 62.4, and 200 GeV corresponding to baryon chemical potentials (\mu_B) between 200 - 20 MeV. Our measurements of the products \kappa \sigma^2 and S \sigma, which can be related to theoretical calculations sensitive to baryon number susceptibilities and long range correlations, are constant as functions of collision centrality. We compare these products with results from lattice QCD and various models without a critical point and study the \sqrt(s_NN) dependence of \kappa \sigma^2. From the measurements at the three beam energies, we find no evidence for a critical point in the QCD phase diagram for \mu_B below 200 MeV.

40 data tables

$\Delta N_p$ multiplicity distribution in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV for 0-5 percent central collisions at midrapidity (| y |< 0.5).

$\Delta N_p$ multiplicity distribution in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV for 30-40 percent central collisions at midrapidity (| y |< 0.5).

$\Delta N_p$ multiplicity distribution in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV for 70-80 percent central collisions at midrapidity (| y |< 0.5).

More…

Center of mass energy and system-size dependence of photon production at forward rapidity at RHIC

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Nucl.Phys.A 832 (2010) 134-147, 2010.
Inspire Record 822997 DOI 10.17182/hepdata.101347

We present the multiplicity and pseudorapidity distributions of photons produced in Au+Au and Cu+Cu collisions at \sqrt{s_NN} = 62.4 and 200 GeV. The photons are measured in the region -3.7 < \eta < -2.3 using the photon multiplicity detector in the STAR experiment at RHIC. The number of photons produced per average number of participating nucleon pairs increases with the beam energy and is independent of the collision centrality. For collisions with similar average numbers of participating nucleons the photon multiplicities are observed to be similar for Au+Au and Cu+Cu collisions at a given beam energy. The ratios of the number of charged particles to photons in the measured pseudorapidity range are found to be 1.4 +/- 0.1 and 1.2 +/- 0.1 for \sqrt{s_NN} = 62.4 GeV and 200 GeV, respectively. The energy dependence of this ratio could reflect varying contributions from baryons to charged particles, while mesons are the dominant contributors to photon production in the given kinematic region. The photon pseudorapidity distributions normalized by average number of participating nucleon pairs, when plotted as a function of \eta - ybeam, are found to follow a longitudinal scaling independent of centrality and colliding ion species at both beam energies.

14 data tables

Fig. 1. (Color online.) Top panel: Photon reconstruction efficiency $\left(\epsilon_{\gamma}\right)$ (solid symbols) and purity of photon sample $\left(f_{\mathrm{p}}\right)$ (open symbols) for PMD as a function of pseudorapidity $(\eta)$ for minimum bias $\mathrm{Au}+\mathrm{Au}$ and $\mathrm{Cu}+\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=$ $200 \mathrm{GeV}$. Bottom panel: Comparison between estimated $\epsilon_{\gamma}$ and $f_{\mathrm{p}}$ for PMD as a function of $\eta$ for minimum bias $\mathrm{Au}+\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=62.4 \mathrm{GeV}$ using HIJING and AMPT models. The error bars on the AMPT data are statistical and those for HIJING are within the symbol size. NOTE: For points with invisible error bars, the point size was considered as an absolute upper limit for the uncertainty.

Fig. 1. (Color online.) Top panel: Photon reconstruction efficiency $\left(\epsilon_{\gamma}\right)$ (solid symbols) and purity of photon sample $\left(f_{\mathrm{p}}\right)$ (open symbols) for PMD as a function of pseudorapidity $(\eta)$ for minimum bias $\mathrm{Au}+\mathrm{Au}$ and $\mathrm{Cu}+\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=$ $200 \mathrm{GeV}$. Bottom panel: Comparison between estimated $\epsilon_{\gamma}$ and $f_{\mathrm{p}}$ for PMD as a function of $\eta$ for minimum bias $\mathrm{Au}+\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=62.4 \mathrm{GeV}$ using HIJING and AMPT models. The error bars on the AMPT data are statistical and those for HIJING are within the symbol size. NOTE: For points with invisible error bars, the point size was considered as an absolute upper limit for the uncertainty.

Fig. 2. (Color online.) Event-by-event photon multiplicity distributions (solid circles) for $\mathrm{Au}+\mathrm{Au}$ and $\mathrm{Cu}+\mathrm{Cu}$ at $\sqrt{s_{\mathrm{NN}}}=62.4$ and $200 \mathrm{GeV} .$ The distributions for top $0-5 \%$ central $\mathrm{Au}+$ Au collisions and top $0-10 \%$ central $\mathrm{Cu}+\mathrm{Cu}$ collisions are also shown (open circles). The photon multiplicity distributions for central collisions are observed to be Gaussian (solid line). Only statistical errors are shown. NOTE: For points with invisible error bars, the point size was considered as an absolute upper limit for the uncertainty.

More…

The Underlying event in hard interactions at the Tevatron anti-p p collider

The CDF collaboration Acosta, D. ; Affolder, T. ; Albrow, M.G. ; et al.
Phys.Rev.D 70 (2004) 072002, 2004.
Inspire Record 647490 DOI 10.17182/hepdata.22135

For comparison of inclusive jet cross sections measured at hadron-hadron colliders to next-to-leading order (NLO) parton-level calculations, the energy deposited in the jet cone by spectator parton interactions must first be subtracted. The assumption made at the Tevatron is that the spectator parton interaction energy is similar to the ambient level measured in minimum bias events. In this paper, we test this assumption by measuring the ambient charged track momentum in events containing large transverse energy jets at $\sqrt{s}=1800$ GeV and $\sqrt{s}=630$ GeV and comparing this ambient momentum with that observed both in minimum bias events and with that predicted by two Monte Carlo models. Two cones in $\eta$--$\phi$ space are defined, at the same pseudo-rapidity, $\eta$, as the jet with the highest transverse energy ($E_T^{(1)}$), and at $\pm 90^o$ in the azimuthal direction, $\phi$. The total charged track momentum inside each of the two cones is measured. The minimum momentum in the two cones is almost independent of $E_T^{(1)}$ and is similar to the momentum observed in minimum bias events, whereas the maximum momentum increases roughly linearly with the jet $E_T^{(1)}$ over most of the measured range. This study will help improve the precision of comparisons of jet cross section data and NLO perturbative QCD predictions. %this is new The distribution of the sum of the track momenta in the two cones is also examined for five different $E_T^{(1)}$ bins. The HERWIG and PYTHIA Monte Carlos are reasonably successful in describing the data, but neither can describe completely all of the event properties.

11 data tables

Average PT inside the max and min cone for cm energy 1800 GeV.

Data points read from plot.

Data points read from plot.

More…