We present results on charm pair correlations measured in proton-emulsion interactions at s =38.7 GeV. The predictions of leading order QCD for the distributions in invariant mass, rapidity gap, x F , and polar angle in the charm pair CMS are qualitatively consistent with our measurements. The mean p T of the pairs is equal within errors to that measured in dilepton production at the same energy and mass range.
No description provided.
We report results on D 0 and D + production in proton-emulsion interactions at s =38.7 GeV. A fit to the form (1−| x F |) n exp (−bp 2 T ) yields n=6.9 +1.9 −1.8 and b=0.84 +0.10 −0.08 (GeV/ c ) −2 . The total inclusive cross section, is assuming linear A dependence, is measured to be 38±3(stat.) ±13 (sys.) μ b for the D 0 and 38±9±14 μ b for the D + . A comparison of these results with previous measurements indicates that nuclear effects do not strongly influence charm production. The predictions of QCD are in good agreement with our data.
The differential cross section is fitted by the equation : D2(SIG)/D(XL)/D(PT**2) = CONST*(1-XL)**POWER*EXP(-SLOPE*PT**2).
The differential cross section is fitted by the equation : D2(SIG)/D(XL)/D(PT**2) = CONST*(1-XL)**POWER*EXP(-SLOPE*PT**2).
Linear A-dependence. Different modes of the charm mesons detection were used (see text for detail).
The charged particle multiplicity distribution of hadronic Z decays was measured on the peak of the Z resonance using the ALEPH detector at LEP. Using a model independent unfolding procedure the distribution was found to have a mean 〈 n 〉=20.85±0.24 and a dispersion D =6.34±0.12. Comparison with lower energy data supports the KNO scaling hypothesis in the energy range s =29−91.25 GeV. At s =91.25 GeV the shape of the multiplicity distribution is well described by a log-normal distribution, as predicted from a cascading model for multi-particle production. The same model also successfully describes the energy dependence of the mean and width of the multiplicity distribution. A next-to-leading order QCD prediction in the framework of the modified leading-log approximation and local parton-hadron duality is found to fit the energy dependence of the mean but not the width of the charged multiplicity distribution, indicating that the width of the multiplicity distribution is a sensitive probe for higher order QCD or non-perturbative effects.
Unfolded charged particle multiplicity distribution. The entry for N=2 is from the LUND 7.2 parton shower model.
Leading moments of the charged particle multiplicity. R2 is the second binomial moment given by MEAN(MULT(MULT-1))/(MEAN(MULT))**2.
Hadronic charm production was investigated with a two-arm magnetic spectrometer. The experiment was triggered on muons from the semileptonic decay of charm particles in one arm while reconstructing the mass of the associatively produced partners in the other arm. An excess of 153±46 combinations above background for the neutral D→Kπ mode was observed. This corresponds to a model-dependent DD¯ production cross section of 41±12+15−11 μb per nucleon, where the first uncertainty is statistical and the second is systematic.
Cross sections based on (1-ABS(XF))**3 production model.
Cross section based on (1-ABS(XF))**3 production model.
We have measured the photon yield in lepton pair events recorded by the OPAL detector in a data sample corresponding to an integrated luminosity of 7.1 pb −1 at centre-of-mass energies between 88 GeV and 94 GeV. The results are compared to QED expectations for initial and final state photon radiation. No anomalous photon yield has been found, and stringent limits on the branching ratio for exotic radiative three body Z 0 decays into a photon and a pair of leptons are obtained. We also place limits on possible Z 0 decays into a photon and a resonance X with subsequent decays of X into a pair of leptons. Acollinear μ + μ − events with missing momentum along the beam direction are identified as events with hard initial state photon radiation and used to measure an average cross section of 15 ± 8 6 pb for e + e − annihilation into μ + μ − , in the so far untested range of centre-of-mass energies between 60 GeV and 84 GeV. This value is consistent with a cross section of 24 pb, expected from Z 0 and photon exchange.
No description provided.
The properties of theZ resonance are measured on the basis of 190 000Z decays into fermion pairs collected with the ALEPH detector at LEP. Assuming lepton universality,Mz=(91.182±0.009exp±0.020L∶P) GeV,ГZ=(2484±17) MeV, σhad0=(41.44±0.36) nb, andГjad/Гℓℓ=21.00±0.20. The corresponding number of light neutrino species is 2.97±0.07. The forward-back-ward asymmetry in leptonic decays is used to determine the ratio of vector to axial-vector coupling constants of leptons:gv2(MZ2)/gA2(MZ2)=0.0072±0.0027. Combining these results with ALEPH results on quark charge and\(b\bar b\) asymmetries, and τ polarization, sin2θW(MZ2). In the contex of the Minimal Standard Model, limits are placed on the top-quark mass.
Statistical errors only.
No description provided.
No description provided.
The polarization of τ leptons produced in the reaction e + e − → τ + τ − at the Z resonance has been measured using the τ decay modes e ν e ν τ , μν μ ν τ , πν τ , ϱν τ , and a 1 ν τ . The mean value obtained is P τ = −0.152±0.045, indicating that parity is violated in the neutral current process e + e − → τ + τ − . The result corresponds to a ratio of a neutral current vector and axial vector coupling constants of the τ lepton g V τ (M 2 Z ) g A τ (M 2 Z ) = 0.076±0.023 and a value of the electroweak mixing parameter sin 2 θ w ( M 2 Z ) = 0.2302 ± 0.0058.
Results are for both TAU+ and TAU- decay. Final combined result contains statistical and systematic errors added in quadrature.
No description provided.
Quark and gluon jets in e + e − three-jet events at LEP are identified using lepton tagging of quark jets, through observation of semi-leptonic charm and bottom quark decays. Events with a symmetry under transposition of the energies and directions of a quark and gluon jet are selected: these quark and gluon jets have essentially the same energy and event environment and as a consequence their properties can be compared directly. The energy of the jets which are studied is about 24.5 GeV. In the cores of the jets, gluon jets are found to yield a softer particle energy spectrum than quark jets. Gluon jets are observed to be broader than quark jets, as seen from the shape of their particle momentum spectra both in and out of the three-jet event plane. The greater width of gluon jets relative to quark jets is also visible from the shapes of their multiplicity distributions. Little difference is observed, however, between the mean value of particle multiplicity for the two jet types.
QUARK means QUARK or QUARKBAR.
The production of K 0 mesons in e + e − interactions at center of mass energies in the region of the Z 0 mass has been investigated with the OPAL detector at LEP. The rate is found to be 2.10±0.02±0.14 K 0 , Z 0 per hadronic event. The predictions from the JETSET and HERWIG generators agree very well with both the rate and the scale invariant cross section (1/σ had β) (dσ/d x E ) for K 0 production. Comparisons of the inclusive momentum spectrum with predictions of an analytical QCD formula and with data from lower center of mass energies are presented.
No description provided.
No description provided.
K0 multiplicity per hadronic event.
The production rate of final state photons in hadronic Z 0 decays is measured as a function of y cut = M ij 2 / E cm 2 the jet resolution parameter and minimum mass of the photon-jet system. Good agreement with the theoretical expectation from an O( αα s ) matrix element calculation is observed. Comparing the measurement and the prediction for y cut = 0.06, where the experimental systematic and statistical errors and the theoretical uncertainties are small, and combining this measurement with our result for the hadronic width of the Z 0 , we derived partial widths of up and down type quarks to be Γ u = 333 ± 55 ± 72 MeV and Γ d = 358 ± 37 ± 48 MeV in agreement with the standard model expectations. We compare our yield with the QCD shower models including photon radiation. At low γ cut JETSET underestimates the photon yield, and ARIADNE describes the production rate well.
It is assumed that the couplings of various up quarks to be the same.
It is assumed that the couplings of various down type quarks to be the same.