A study of inclusive production of the meson resonances ρ 0 , K ∗0 (892), ƒ 0 (975) and ƒ 2 (1270) in hadronic decays of the Z 0 is presented. The measured mean meson multiplicity per hadronic event is 0.83 ± 0.14 for the ρ 0 0.64 ± 0.24 for the K ∗0 (892), 0.10 ± 0.04 for the ƒ 0 (975) in the momentum range p > 0.05 p beam ( x p > 0.05) and 0.11 ± 0.05 for the ƒ 2 (1270) for x p > 0.1 . These values and the corresponding differential cross sections ( 1 σ hadr ) d σ d x p for the vector mesons are in good agreement with the predictions of the JETSET 7.3 PS and HERWIG 5.4 models. The ƒ 2 (1270) production is overestimated by HERWIG but its x p -shape is correctly reproduced. The measured ratios of the production cross sections σ(ƒ 2 (1270)) σ(ρ 0 ) = 0.22 ± 0.08 and σ(ƒ 2 (1270)) σ(ƒ 0 (975)) = 3 −1 +7 for x p > 0.1 are consistent with the results obtained in hadronic reactions.
Average multiplicity per hadronic event. Extrapolation to x = 0 using the x shape predicted by JETSET 7.3 PS.
Average multiplicity per hadronic event. Extrapolation to x = 0 using the x shape predicted by JETSET 7.3 PS.
Average multiplicity per hadronic event. Extrapolation to x = 0 using the x shape predicted by JETSET 7.3 PS.
Multiplicity distributions of negatively charged particles have been studied in restricted phase space intervals for central S+S, O+Au and S+Au collisions at 200 GeV/nucleon. It is shown that multiplicity distributions are well described by a negative binomial form irrespectively of the size and dimensionality of phase space domain. A clan structure analysis reveals interesting similarities between complex nuclear collisions and a simple partonic shower. The lognormal distribution agrees reasonably well with the multiplicity data in large domains, but fails in the case of small intervals. No universal scaling function was found to describe the shape of multiplicity distributions in phase space intervals of varying size.
Multiplicity distribution analysed in 1D for M = 4.
Multiplicity distribution analysed in 2D for M = 16.
Multiplicity distribution analysed in 3D for M = 64.
Production of charged kaons in proton-sulphur, proton-gold, sulphur-sulphur and oxygen-gold collisions at 200 GeV/nucleon has been studied in the NA35 Streamer Chamber experiment. Rapidity and transverse mass distributions as well as mean multiplicities were obtained. The results are compared with nucleon-nucleon data and with model predictions.
Tranverse mass distribution for all charged kaons in S S collisions for the limited yrap range 1.4 to 2.4.
Tranverse mass distribution for K0S production in the limited rapidity range 1.4 to 2.4. Data are taken from Bartke et al. ZP C48 (1990) 191.
Rapidity distribution for K+ production in p SU interactions.
We measure the relative cross sections for D mesons produced in interactions of π− and π+ beams with targets of Be, Cu, Al, and W. The measurement is based on 1400 fully reconstructed decays of the types D0→K−π+, D+→K−π+π+, and charge conjugates. We find that the cross section for the production of both neutral and charged D’s by either π− or π+ is well fitted by the form Aα where A is the atomic mass and α=1.00±0.05±0.02, where the errors are statistical and systematic, respectively. There is no significant dependence of α on the transverse or longitudinal momentum of the D meson or on the charge of either the incident pion or the produced D mesons.
No description provided.
The nuclear response of a medium-mass nucleus (136Xe) to electromagnetic excitation in a near-relativistic heavy-ion collision was investigated in the reaction136Xe(0.7A GeV)+Pb. From an exclusive measurement of the neutron decay of the excited Xe136 projectiles, strong excitations of giant resonances and, in particular, of the double isovector giant dipole resonance were identified. A resonance energy of 28.3±0.7 MeV, a width of 6.3±1.6 MeV, and a total cross section of 215±50 mb were found for the double giant dipole resonance.
CROSS SECTION FOR THE DOUBLE GIANT DIPOLE RESONANCE IN XE136.
Inclusive jet cross sections have been measured in p¯p collisions at √s =546 and 1800 GeV, using the Collider Detector at Fermilab. The ratio of jet cross sections is compared to predictions from simple scaling and O(as3) QCD. Our data exclude scaling and lie (1.5–2.4)σ below a range of QCD predictions.
Additional systematic uncertainty +23,-26 pct.
Additional systematic uncertainty +-16 pct.
Additional systematic uncertainty +-0.22.
We report a study of electron proton collisions at very low Q 2 , corresponding to virtual photoproduction at centre of mass energies in the range 100–295 GeV. The distribution in transverse energy of the observed hadrons is much harder than can be explained by soft processes. Some of the events show back-to-back two-jet production at the rate and with the characteristics expected from hard two-body scattering. A subset of the two-jet events have energy in the electron direction consistent with that expected from the photon remnant in resolved photon processes.
No description provided.
A measurement of the gluon structure fusion using direct photon events observed with the UA2 detector in p p collisions at √ s =630 GeV is presented. The x -range covered by this analysis is between 0.049 and 0.207 and the Q 2 range is between 280 GeV 2 and 3670 GeV 2 . The data sample corresponds to an integrated luminosity of 7.14 pb −1 . The results are found to be in good agreement with the gluon distributions measured in deep inelastic scattering experiments extrapolated to the UA2 Q 2 values.
X(Q=PARTON) and Q**2 are mean values.
Experimental data on multiplicities and angular distributions of heavy ionizing and shower particles in inelastic interactions of 350 GeV Σ− hyperons in nuclear emulsion are presented. The data are compared with the results of other experiments on proton and pion interactions in emulsion at energies of 60-800 GeV. We observe no significant differences in the global characteristics of strange hyperon interactions relative to nonstrange baryon interactions at equivalent energies, other than those attributable to the differing cross sections.
No description provided.
No description provided.
No description provided.
Measurements of the analyzing power Ay(θ) for neutron-proton scattering have been performed at 7.6, 12.0, 14.1, 16.0, and 18.5 MeV. The experimental setup is described as are the finite-geometry corrections applied to the data. One of these corrections, due to the presence of carbon in the scintillators used for neutron detection, is discussed in detail. The Ay(θ) data are compared to the predictions of the Paris and Bonn nucleon-nucleon potentials and the predictions of two phase-shift analyses, one of which incorporates charge-independence breaking effects in the 3P waves.
Measured analyzing power at 7.6 MeV.
Measured analyzing power at 12.0 MeV.
Measured analyzing power at 14.1 MeV.