A complete set of polarization-transfer observables has been measured for quasifree (p→,n→) reactions on H2, C12, and Ca40 at a bombarding energy of 495 MeV and a laboratory scattering angle of 18°. The data span an energy-loss range from 0 to 160 MeV, with a corresponding momentum transfer range of qc.m.=1.7–1.9 fm−1. The laboratory observables are used to construct partial cross sections proportional to the nonspin response and three orthogonal spin responses. These results are compared to the transverse spin response measured in deep inelastic electron scattering and to nuclear responses based on the random phase approximation. The polarization observables for all three targets are remarkably similar and reveal no evidence for an enhancement of the spin-longitudinal nuclear response relative to the spin-transverse response. These results suggest the need for substantial modifications to the standard form assumed for the residual particle-hole interaction.
No description provided.
No description provided.
No description provided.
We report the full reconstruction of χc mesons through the decay chain χc→J/ψ γ, J/ψ→μ+μ−, using data obtained at the Collider Detector at Fermilab in 2.6±0.2 pb−1 of p¯p collisions at √s =1.8 TeV. This exclusive χc sample is used to measure the χc-meson production cross section times branching fractions. We obtain σ×B=3.2±0.4(stat)−1.1+1.2(syst) nb for χc mesons decaying to J/ψ with pT>6.0 GeV/c and pseudorapidity ‖η‖<0.5. From this and the inclusive J/ψ cross section we calculate the inclusive b-quark cross section to be 12.0±4.5 μb for pTb>8.5 GeV/c and ‖yb‖<1.
No description provided.
This determination of the b-quark cross section uses an earlier CDF measurement of the pbar p --> J/PSI X cross section of 6.88 +- 1.11 nb. See Abe et al. PRL 69, 3704.
We present measurements of the bottom-quark production cross sections in pp¯ collisions at √s =1.8 TeV. From the inclusive electron production rate, we have determined the bottom-quark production cross sections to be 1010±270, 168±43, 37±10 nb for the rapidity range of ‖yb‖<1.0 and the transverse momentum ranges of pTb>15, 23, 32 GeV/c, respectively. In addition, from the associated electron-D0 production rate, we have determined the bottom-quark cross section to be 364±80(stat)±95(syst) nb for ‖yb‖<1.0 and pTb>19 GeV/c.
From the inclusive electron production rate.
From the associated electron-D0 production rate.
The W production cross section times the branching ratio for W→lν, l=e,μ decays has been measured as a function of the associated jet multiplicity. The data have been recorded at the Collider Detector at Fermilab during the 1988–89 run. A recent leading order QCD calculation agrees well with the data up to a jet multiplicity of 4.
No description provided.
No description provided.
Cross section times the leptonic branching ratio from the combined electron and muon decay modes.
We have measured the B0B¯0 mixing probability, χd, using a sample of 965 000 BB¯ pairs from Υ(4S) decays. Counting dilepton events, we find χd=0.157±0.016±0.018−0.021+0.028. Using tagged B0 events, we find χd=0.149±0.023±0.019±0.010. The first (second) error is statistical (systematic). The third error reflects a ±15% uncertainty in the assumption, made in both cases, that charged and neutral B pairs contribute equally to dilepton events. We also obtain a limit on the CP impurity in the Bd0 system, ‖Re(εB0)‖<0.045 at 90% C.L.
No description provided.
Mixing parameter from counting dilepton events. CONST(N=MIXING PARAM) = 1/(1 - LAMBDA(C,N)) * (N(2LEPTON+) + N(2LEPTON-))/(N(LEPTON+,LEPTON-) + N(2LEPTON+) + N(2LEPTON-)). LAMBDA(C,N) is the fraction of dilepton events coming from B+B- decays, LAMBDA(C,N) = f(B+)*Br(B+)**2/(f(B+)*Br(B+)**2 + f(B0)*Br(B0)**2), where f(B+),f(B0) are the productiron fractions of the charged and neutral B's at the UPSI(4S), and Br(B+), Br(B0) are the semileptonic brancing fractions.
Mixing parameter from tagged B0 events.
Using data from the TPC/Two-Gamma experiment at the SLAC e+e− storage ring PEP, a C=+1 resonance has been observed in the π+π−π0γ final state resulting from the fusion of one nearly real and one quite virtual photon. The actual decay channel is probably π+π−π0π0, where one final-state photon is not detected, and the mass of the fully reconstructed state would be approximately 1525 MeV. A four-pion decay mode in turn implies that the resonance has even isospin. The nonobservation of this R(1525) when both initial-state photons are nearly real suggests a spin-1 assignment. Since the large measured value of the product of the branching ratio into π+π−π0π0 and the γγ coupling makes it unlikely that this state is the mostly s¯s f1(1510), its interpretation may lie outside of conventional meson spectroscopy. There is a second, less-significant enhancement observed in the same reaction at a four-pion mass centered around 2020 MeV.
No description provided.
Coupling parameter times the effective form factor.
We present results on the cross-section ratio for inelastic muon scattering on neutrons and protons as a function of Bjorken chi;. The data extend to χ values two orders of magnitude smaller than in previous measurements, down to 2×10 −5 , for Q 2 >0.01 GeV 2 . The ratio is consistent with unity throughout this new range.
No description provided.
No description provided.
Data taken with the Collider Detector at Fermilab (CDF) during the 1988–1989 run of the Tevatron are used to measure the distribution of the center-of-mass (rest frame of the initial state partons) angle between isolated prompt photons and the beam direction. The shape of the angular distribution for photon-jet events is found to be significantly different from that observed in dijet data. The QCD predictions show qualitative agreement with the observed prompt photon angular distribution.
Background subtracted normalised prompt photon angular distribution.
We present the first measurement of the left-right cross section asymmetry (ALR) for Z boson production by e+e− collisions. The measurement was performed at a center-of-mass energy of 91.55 GeV with the SLD detector at the SLAC Linear Collider which utilized a longitudinally polarized electron beam. The average beam polarization was (22.4±0.6)%. Using a sample of 10 224 Z decays, we measure ALR to be 0.100±0.044(stat)±0.004(syst), which determines the effective weak mixing angle to be sin2θWeff=0.2378 ±0.0056(stat)±0.0005(syst).
R and L refer to Right and Left handed beam polarization.
Effective weak mixing angle.
Using the CLEO-II detector at CESR, we have observed the D s 1 (2536) + in the decay modes D s1 + →D ∗0 K + and D ∗+ K S + , and measured its fragmentation and production ratios. Using the helicity angle distribution of the daugter D ∗0 , we obtain new evidence for the assignment of 1 + for the spin and parity of the D s 1 + . We also set upper limits on the decays D s1 + →D s ∗+ λ, D 0 K + and D + K s 0 .
No description provided.
No description provided.