The analyzing power,$A_{oono}$, and the polarization transfer observables$K_{onno}$,$K_{os''so}$
Position 'A' (see text for explanation).
Position 'A' (see text for explanation).
Position 'A' (see text for explanation).
A double scattering experiment, performed at the Paul-Scherrer-Institut (PSI), has measured a large variety of spin observables for free np elastic scattering from 260 to 535 MeV in the c.m. angle ran
Measurements of DNN with statistical errors only.
Measurements of DSL with statistical errors only.
Measurements of DSS with statistical errors only.
The spin correlation parameters$A_{oonn}, A_{ooss}, A_{oosk}, A_{ookk}$and the analyzing power$A_{oono}$have been measured i
Measurement of the analysing power. Statistical errors only are shown. For the systematic errors see the systematics section above. Note that there are two overlapping angular settings.
Measurements of the spin correlation parameter CNN. Statistical errors onlyare shown. For the systematics see the systematic section above. Note the two overlapping angular settings.
Measurements of the spin correlation parameter CLL. Statistical errors onlyare shown. For the systematics see the systematic section above. Note the two overlapping angular settings.
The PHENIX collaboration at the Relativistic Heavy Ion Collider (RHIC) reports measurements of azimuthal dihadron correlations near midrapidity in $d$$+$Au collisions at $\sqrt{s_{_{NN}}}$=200 GeV. These measurements complement recent analyses by experiments at the Large Hadron Collider (LHC) involving central $p$$+$Pb collisions at $\sqrt{s_{_{NN}}}$=5.02 TeV, which have indicated strong anisotropic long-range correlations in angular distributions of hadron pairs. The origin of these anisotropies is currently unknown. Various competing explanations include parton saturation and hydrodynamic flow. We observe qualitatively similar, but larger, anisotropies in $d$$+$Au collisions compared to those seen in $p$$+$Pb collisions at the LHC. The larger extracted $v_2$ values in $d$$+$Au collisions at RHIC are consistent with expectations from hydrodynamic calculations owing to the larger expected initial-state eccentricity compared with that from $p$$+$Pb collisions. When both are divided by an estimate of the initial-state eccentricity the scaled anisotropies follow a common trend with multiplicity that may extend to heavy ion data at RHIC and the LHC, where the anisotropies are widely thought to arise from hydrodynamic flow.
The second-order pair anisotropy, c2, of the central collision excess as a function of associated particle pT.
The third-order pair anisotropy, c3, of the central collision excess as a function of associated particle pT.
Charged hadron second-order anisotropy, v2, as a function of pT.
The kinetic energy spectrum and the polarization of the PSI neutron beam produced in the reaction 12C(p,n)X at 0° with 590 MeV polarized protons were investigated. A strong energy dependence of the ne
No description provided.
The reaction ${n} {p} \to {p} {p} \pi^{-}$ has been studied in a kinematically complete measurement with a large acceptance time-of-flight spectrometer for incident neutron energies between threshold and 570 MeV. The proton-proton invariant mass distributions show a strong enhancement due to the pp($^{1}{S}_{0}$) final state interaction. A large anisotropy was found in the pion angular distributions in contrast to the reaction ${p}{p} \to {p}{p} \pi^{0}$. At small energies, a large forward/backward asymmetry has been observed. From the measured integrated cross section $\sigma({n}{p} \to {\rm p}{p} \pi^{-})$, the isoscalar cross section $\sigma_{01}$ has been extracted. Its energy dependence indicates that mainly partial waves with Sp final states contribute. Note: Due to a coding error, the differential cross sections ${d \sigma}/{d M_{pp}}$ as shown in Fig. 9 are too small by a factor of two, and inn Table 3 the differential cross sections ${d \sigma}/{d \Omega_{\pi}^{*}}$ are too large by a factor of $10/2\pi$. The integrated cross sections and all conclusions remain unchanged. A corresponding erratum has been submitted and accepted by European Physics Journal.
Differential cross sections DSIG/DOMEGA for excusive PI- production in N P interactions at incident kinetic energies 315, 345 and 375 Mev after background subtraction and efficiency correction.
Differential cross sections DSIG/DOMEGA for exclusive PI- production in N Pinteractions at incident kinetic energies 405, 435 and 465 Mev after background subtraction and efficiency correction.
Differential cross sections DSIG/DOMEGA for exclusive PI- production in N Pinteractions at incident kinetic energies 495, 525 and 550 Mev after background subtraction and efficiency correction.
New high precision measurements of the Collins and Sivers asymmetries of charged hadrons produced in deep-inelastic scattering of muons on a transversely polarised 6LiD target are presented. The data were taken in 2003 and 2004 with the COMPASS spectrometer using the muon beam of the CERN SPS at 160 GeV/c. Both the Collins and Sivers asymmetries turn out to be compatible with zero, within the present statistical errors, which are more than a factor of 2 smaller than those of the published COMPASS results from the 2002 data. The final results from the 2002, 2003 and 2004 runs are compared with naive expectations and with existing model calculations.
Collins asymmetry against PT for all negative hadrons.
Collins asymmetry against Bjorken X for all negative hadrons.
Collins asymmetry against Z for all negative hadrons.
The momentum distribution of electrons from decays of heavy flavor (charm and beauty) for midrapidity |y| < 0.35 in p+p collisions at sqrt(s) = 200 GeV has been measured by the PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) over the transverse momentum range 0.3 < p_T < 9 GeV/c. Two independent methods have been used to determine the heavy flavor yields, and the results are in good agreement with each other. A fixed-order-plus-next-to-leading-log pQCD calculation agrees with the data within the theoretical and experimental uncertainties, with the data/theory ratio of 1.72 +/- 0.02^stat +/- 0.19^sys for 0.3 < p_T < 9 GeV/c. The total charm production cross section at this energy has also been deduced to be sigma_(c c^bar) = 567 +/- 57^stat +/- 224^sys micro barns.
Heavy-flavor decay electrons invariant differential cross-section An additional 10% normalization uncertainty is to add.
Differential charm cross section To obtain this value, the differential "charm-decay" electrons cross-section, integrated over PT>0.4 GeV/c, has been extrapolated down to PT=0 using the spectrum shape predicted by a fixed-order-plus-next-to-leading-log (FONLL)calculation. The contribution from beauty and beauty cascades, estimated to be 0.1 microbarn, has been substracted, and the c->e branching ratio used was 9.5 +- 1.0%.
Total charm cross section To obtain the total charm cross section, the differential charm cross section has been extrapolated to the whole rapidity range, using a HVQMNR rapidity distribution with aCTEQ5M PDF.
J/Psi production in p+p collisions at sqrt(s) = 200 GeV has been Measured in the PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) over a rapidity range of -2.2 < y < 2.2 and a transverse momentum range of 0 < pT < 9 GeV/c. The statistics available allow a detailed measurement of both the pT and rapidity distributions and are sufficient to constrain production models. The total cross section times branching ratio determined for J/Psi production is B_{ll} sigma_pp^J/psi = 178 +/- 3(stat) +/- 53(syst) +/- 18(norm) nb.
J/PSI differential cross section, times dilepton branching ratio, versus transverse momentum PT, at mid rapidity : -0.35<y<0.35.
J/PSI differential cross section, times dilepton branching ratio, versus transverse momentum PT, at forward rapidities : absolute value of y belongs to [1.2;2.2].
Mean PT^2 value at mid rapidities : -0.35<y<0.35 The mean PT is obtained with a phenomonological fit of the J/PSI distribution in PT of the form (1/(2*PI*PT))*D(SIG)/DPT = A ( 1+(PT/B)^2)^-6 .The systematic error includes the incertainty from the maximum shape deviation permitted by the point-to-point correlated errors and from allowing the exponent of the fit fonctionto be a free parameter.
Transverse momentum distributions and yields for $\pi^{\pm}$, $K^{\pm}$, $p$ and $\bar{p}$ in $p+p$ collisions at $\sqrt{s}$=200 and 62.4 GeV at midrapidity are measured by the PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC). These data provide important baseline spectra for comparisons with identified particle spectra in heavy ion collisions at RHIC. We present the inverse slope parameter $T_{\rm inv}$, mean transverse momentum $
Invariant cross sections for inclusive PI+ and PI- production in P P collisions at a centre-of-mass energy of 200 GeV. There is an additional normalization uncertainty of 9.7 PCT.
Invariant cross sections for inclusive K+ and K- production in P P collisions at a centre-of-mass energy of 200 GeV. There is an additional normalization uncertainty of 9.7 PCT.
Invariant cross sections for inclusive P and PBAR production in P P collisions at a centre-of-mass energy of 200 GeV with feed-down weak decay corrections NOT applied. There is an additional normalization uncertainty of 9.7 PCT.