Jet shapes have been measured in inclusive jet production in proton-proton collisions at sqrt(s) = 7 TeV using 3 pb^{-1} of data recorded by the ATLAS experiment at the LHC. Jets are reconstructed using the anti-kt algorithm with transverse momentum 30 GeV < pT < 600 GeV and rapidity in the region |y| < 2.8. The data are corrected for detector effects and compared to several leading-order QCD matrix elements plus parton shower Monte Carlo predictions, including different sets of parameters tuned to model fragmentation processes and underlying event contributions in the final state. The measured jets become narrower with increasing jet transverse momentum and the jet shapes present a moderate jet rapidity dependence. Within QCD, the data test a variety of perturbative and non-perturbative effects. In particular, the data show sensitivity to the details of the parton shower, fragmentation, and underlying event models in the Monte Carlo generators. For an appropriate choice of the parameters used in these models, the data are well described.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 30 to 40 GeV and absolute values of the jet rapidity from 0 to 2.8.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 40 to 60 GeV and absolute values of the jet rapidity from 0 to 2.8.
Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 60 to 80 GeV and absolute values of the jet rapidity from 0 to 2.8.
Bose-Einstein correlations between identical particles are measured in samples of proton-proton collisions at 0.9 and 7 TeV centre-of-mass energies, recorded by the CMS experiment at the LHC. The signal is observed in the form of an enhancement of number of pairs of same-sign charged particles with small relative momentum. The dependence of this enhancement on kinematic and topological features of the event is studied.
The double ratio R_double at 900 and 7000 GeV.
The double ratio R_double at 7000 GeV in different bins of charged particle multiplicity and kT.
The double ratio R_double at 7000 GeV in different bins of charged particle multiplicity and kT.
A measurement of the angular correlations between beauty and anti-beauty hadrons (B B-bar) produced in pp collisions at a centre-of-mass energy of 7 TeV at the CERN LHC is presented, probing for the first time the region of small angular separation. The B hadrons are identified by the presence of displaced secondary vertices from their decays. The B hadron angular separation is reconstructed from the decay vertices and the primary-interaction vertex. The differential B B-bar production cross section, measured from a data sample collected by CMS and corresponding to an integrated luminosity of 3.1 inverse picobarns, shows that a sizable fraction of the B B-bar pairs are produced with small opening angles. These studies provide a test of QCD and further insight into the dynamics of b b-bar production.
Cross section as a function of DELTA(R) for leading jet transverse momentum > 56 GeV. . The (sys) error in the table is due to the limited MC statistics and is uncorrelated bin-to-bin. The other two systematic errors are correlated.
Cross section as a function of DELTA(R) for leading jet transverse momentum > 84 GeV. . The (sys) error in the table is due to the limited MC statistics and is uncorrelated bin-to-bin. The other two systematic errors are correlated.
Cross section as a function of DELTA(R) for leading jet transverse momentum > 120 GeV. . The (sys) error in the table is due to the limited MC statistics and is uncorrelated bin-to-bin. The other two systematic errors are correlated. Note that these two systematic errors are different for the final point.
The spectra of strange hadrons are measured in proton-proton collisions, recorded by the CMS experiment at the CERN LHC, at centre-of-mass energies of 0.9 and 7 TeV. The K^0_s, Lambda, and Xi^- particles and their antiparticles are reconstructed from their decay topologies and the production rates are measured as functions of rapidity and transverse momentum. The results are compared to other experiments and to predictions of the PYTHIA Monte Carlo program. The transverse momentum distributions are found to differ substantially from the PYTHIA results and the production rates exceed the predictions by up to a factor of three.
The rapidity production spectra per NSD event spectra for KS mesons at 0.9 and 7 TeV.
The transverse momentum production spectra per NSD event spectra for KS mesons at 0.9 and 7 TeV.
The rapidity production spectra per NSD event spectra for LAMBDA mesons at 0.9 and 7 TeV.
Dijet angular distributions are measured over a wide range of dijet invariant masses in pp collisions at sqrt(s) = 7 TeV, at the CERN LHC. The event sample, recorded with the CMS detector, corresponds to an integrated luminosity of 36 inverse picobarns. The data are found to be in good agreement with the predictions of perturbative QCD, and yield no evidence of quark compositeness. With a modified frequentist approach, a lower limit on the contact interaction scale for left-handed quarks of Lambda = 5.6 TeV (6.7 TeV) for destructive (constructive) interference is obtained at the 95% confidence level.
Normalized dijet angular distribution for the dijet mass range > 2200 GeV.
Normalized dijet angular distribution for the dijet mass range 1800 to 2200 GeV.
Normalized dijet angular distribution for the dijet mass range 1400 to 1800 GeV.
A search for Z bosons in the mu^+mu^- decay channel has been performed in PbPb collisions at a nucleon-nucleon centre of mass energy = 2.76 TeV with the CMS detector at the LHC, in a 7.2 inverse microbarn data sample. The number of opposite-sign muon pairs observed in the 60--120 GeV/c2 invariant mass range is 39, corresponding to a yield per unit of rapidity (y) and per minimum bias event of (33.8 ± 5.5 (stat) ± 4.4 (syst)) 10^{-8}, in the |y|<2.0 range. Rapidity, transverse momentum, and centrality dependencies are also measured. The results agree with next-to-leading order QCD calculations, scaled by the number of incoherent nucleon-nucleon collisions.
The dimuon yield from Z0 decays per unit rapidity and per unit minumum bias event in the range |yrap| < 2.0.
The dimuon yield from Z0 decays per unit rapidity and per unit minumum bias event as a function of rapidity, and the nuclear modification factor RAA derived by using a POWHEG proton-proton reference.
The dimuon yield from Z0 decays per unit rapidity and per unit minumum bias event as a function of transverse momentum, and the nuclear modificationfactor RAA derived by using a POWHEG proton-proton reference.
A measurement of WW production in pp collisions at sqrt(s) = 7 TeV and a search for the Higgs boson are reported. The WW candidates are selected in events with two leptons, either electrons or muons. The measurement is performed using LHC data recorded with the CMS detector, corresponding to an integrated luminosity of 36 inverse picobarns. The pp to WW cross section is measured to be 41.1 +/- 15.3 (stat) +/- 5.8 (syst) +/- 4.5 (lumi) pb, consistent with the standard model prediction. Limits on WW gamma and WWZ anomalous triple gauge couplings are set. The search for the standard model Higgs boson in the WW decay mode does not reveal any evidence of excess above backgrounds. Limits are set on the production of the Higgs boson in the context of the standard model and in the presence of a sequential fourth family of fermions with high masses. In the latter context, a Higgs boson with mass between 144 and 207 GeV is ruled out at 95% confidence level.
The measured W+ W- cross section.
Hadronic event shapes have been measured in proton-proton collisions at sqrt(s)=7 TeV, with a data sample collected with the CMS detector at the LHC. The sample corresponds to an integrated luminosity of 3.2 inverse picobarns. Event-shape distributions, corrected for detector response, are compared with five models of QCD multijet production.
Distribution of the logarithm of the central transverse thrust for events with jet transverse momentum > 30 GeV, jet |pseudorapidity| < 1.3 and leading the jet transverse momentum from 90 to 125 GeV/c,.
Distribution of the logarithm of the central thrust minor for events with jet transverse momentum > 30 GeV, jet |pseudorapidity| < 1.3 and leading the jet transverse momentum from 90 to 125 GeV/c,.
Distribution of the logarithm of the central transverse thrust for events with jet transverse momentum > 30 GeV, jet |pseudorapidity| < 1.3 and leading the jet transverse momentum from 125 to 200 GeV/c,.
The nature of b-quark jet hadronisation has been investigated using data taken at the Z peak by the DELPHI detector at LEP. Two complementary methods are used to reconstruct the energy of weakly decaying b-hadrons, E^weak_B. The average value of x^weak_B = E^weak_B/E_beam is measured to be 0.699 +/- 0.011. The resulting x^weak_B distribution is then analysed in the framework of two choices for the perturbative contribution (parton shower and Next to Leading Log QCD calculation) in order to extract measurements of the non-perturbative contribution to be used in studies of b-hadron production in other experimental environments than LEP. In the parton shower framework, data favour the Lund model ansatz and corresponding values of its parameters have been determined within PYTHIA~6.156 from DELPHI data: a= 1.84^{+0.23}_{-0.21} and b=0.642^{+0.073}_{-0.063} GeV^-2, with a correlation factor rho = 92.2%. Combining the data on the b-quark fragmentation distributions with those obtained at the Z peak by ALEPH, OPAL and SLD, the average value of x^weak_B is found to be 0.7092 +/- 0.0025 and the non-perturbative fragmentation component is extracted. Using the combined distribution, a better determination of the Lund parameters is also obtained: a= 1.48^{+0.11}_{-0.10} and b=0.509^{+0.024}_{-0.023} GeV^-2, with a correlation factor rho = 92.6%.
The combined unfolded and weighted results, per bin, for $f(x^{\rm weak}_{\rm B})$. Quoted uncertainties have been scaled by 1.31.
The average value of the $x^{\rm weak}_{\rm B}$ distribution.
We present the measurement of non-photonic electron production at high transverse momentum ($p_T > $ 2.5 GeV/$c$) in $p$ + $p$ collisions at $\sqrt{s}$ = 200 GeV using data recorded during 2005 and 2008 by the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The measured cross-sections from the two runs are consistent with each other despite a large difference in photonic background levels due to different detector configurations. We compare the measured non-photonic electron cross-sections with previously published RHIC data and pQCD calculations. Using the relative contributions of B and D mesons to non-photonic electrons, we determine the integrated cross sections of electrons ($\frac{e^++e^-}{2}$) at 3 GeV/$c < p_T <~$10 GeV/$c$ from bottom and charm meson decays to be ${d\sigma_{(B\to e)+(B\to D \to e)} \over dy_e}|_{y_e=0}$ = 4.0$\pm0.5$({\rm stat.})$\pm1.1$({\rm syst.}) nb and ${d\sigma_{D\to e} \over dy_e}|_{y_e=0}$ = 6.2$\pm0.7$({\rm stat.})$\pm1.5$({\rm syst.}) nb, respectively.
The electron pair invariant mass distributions for electrons at $2.5 < p_{T} < 3.0$ GeV/c
The electron pair invariant mass distributions for electrons at $8 < p_{T} < 10$ GeV/c
The simulated electron pair invariant mass distributions for electrons at $2.5 < p_{T} < 3$ GeV/c