Using 13.5-GeV beams at Stanford Linear Accelerator Center, we have compared electron and positron inelastic scattering over the range 1.2<|q2|<3.3 (GeV/c)2, 2<ν<9.5 GeV for the four-momentum and energy transfers, respectively. We find the ratio of the cross sections to be e+e−=1.0027±0.0035 (including statistical and systematic effects), with no significant dependence on q2 or ν. This result has appreciably smaller errors than previous attempts to find two-photon-exchange effects in electron or muon scattering.
No description provided.
Analyzing a sample of 220 000 events from an experiment still in progress at the CERN Proton Synchrotron (PS), 60 pairs of electrons with an energy above 700 MeV have been observed. The electrons, produced by annihilation of antiprotons stopped in a liquid-hydrogen target, are detected with optical spark chambers and scintillation counters. Twenty-nine out of these 60 pairs have been found to be collinear; normalizing with respect to the hadronic two-body channels π + π − and K + K − , a braching ratio B ee =Γ( p ̄ p → e + e − )/Γ( p ̄ p → total ) = (3.2 ± 0.9) × 10 −7 has been obtained
No description provided.
In exposures of the Argonne National Laboratory 12-ft bubble chamber filled with hydrogen and deuterium to a neutrino beam, we have observed events consisting of (1) a single π+ meson originating in the liquid, and (2) a proton with an e+e− pair pointing to it. Only a small fraction of these events can be ascribed to known reactions such as np→nnπ+ and np→npπ0. The remaining events, which correspond to a signal of about 4.5 standard deviations, we ascribe to the reactions νp→νnπ+ and νpπ0.
No description provided.
Production and decay characteristics of electroproduced rho mesons were studied in the final state epπ + π − .
No description provided.