We present data on K − p reactions leading to the final states K 0 n , π 0 Λ, ηΛ, η'Λ, π − Σ + , K 0 Δ 0 (1230), and π − Σ + (1385) from a bubble chamber experiment at 14.3 GeV/ c K − lab momentum. Total and differential cross sections, Λ and Σ ∓ polarisations in π 0 Λ and π − Σ + final states as well as the Σ + (1385) density matrix elements are given.
NORMALIZED TO A TOTAL CROSS SECTION OF 21.5 +- 0.2 MB (GALBRAITH ET AL, PR 138B, 913 (1965)).
No description provided.
No description provided.
We present a systematic analysis of the production of K ∗+ (892) and Δ ++ (1236) resonances in the K + p → K 0 p π + reaction at 5, 8.25 and 16 GeV/ c . We have measured total cross sections, differential cross sections, density matrix elements and examined resonance production mechanisms in terms of the exchange of states with definite naturality. Some results on the reaction K + p → K ∗+ (1420) p are also given.
No description provided.
No description provided.
No description provided.
The reaction K + p → p + X is studied at a beam momentum of 16 GeV/ c using the events where a slow proton with momentum p lab < 1.2 GeV/ c is identified by its bubble density. The inclusive spectra presented and compared with those obtained in K + p interactions at 32 GeV/ c and K − p interactions at 14.3 GeV/ c . The prominent features associated with a triple-Regge formula are found to be consistent with the data. It is shown that the Δ ++ (1236) production strongly affects the shape of the inclusive spectra and the results of the triple-Regge fit. After removal of events associated with Δ ++ (1236) production, the data are consistent with the dominance of an ffR coupling.
No description provided.
No description provided.
No description provided.
The inclusive spectra for p p collisions at 22.4 GeV/ c are investigated. We show that the transverse momentum distributions resemble those in high-energy pp interactions and discuss the influence of annihilation processes on the p T 2 distributions. The invariant inclusive cross section for pions in the central region is found to be 28 ± 1 mb. A charge asymmetry is indicated by the y ∗ spectrum in the central region, the asymmetry parameter having the value 0.15 ± 0.01. Finally, we estimate the upper limit of the diffraction dissociation of the beam particle to be 3.68 −0.15 +0.45 mb.
No description provided.
No description provided.
No description provided.
Data on 6.2 GeV/ c π − p and K − p elastic scattering cross sections are presented in the range 0.3 < − t < 10.7 (GeV/ c ) 2 .
No description provided.
No description provided.
The production and decay of the quasi-two-body final states KΔ(1232) and K ∗ (892)N produced in K + d interactions below 1.5 GeV/ c have been studied in a bubble chamber experiment.
RESONANCE CROSS SECTIONS COMPUTED BY MULTIPLYING THE PRODUCTION PERCENTAGES GIVEN BY THE INTERFERENCE MODEL BY THE CHANNEL CROSS SECTIONS GIVEN IN G. GIACOMELLI ET AL., NP B37, 577 (1972).
DIFFERENTIAL CROSS SECTIONS FROM DEUTERIUM DATA, NORMALIZED TO THE EXPERIMENTAL INTEGRATED CROSS SECTIONS QUOTED IN T 2.
LEGENDRE COEFFICIENTS FROM DEUTERIUM DATA.
Inclusive production of Λ and Λ in K + p interactions is studied at incident momenta of 8.2 and 16.0 GeV/ c . Cross sections and single-particle distributions are presented, the correlation between longitudinal and transverse momentum is investigated, and the dependence of average charge multiplicity on missing mass measured. For Λ production, early scaling is observed in the target fragmentation region when the data are presented in terms of ( M 2 - M th 2 )/ s and t , where M th is the threshold value of the missing mass M . Furthermore, a triple-Regge analysis in these variable yields an effective exchange trajectory which passes through the K, Q and L mesons. There is evidence for beam fragmentation in Λ and Λ production, but the contributions seem not to be dominant in the fragmentation region. Nevertheless, the parameter values in a triple-Regge description are estimated, and together with those for target fragmentation in Λ production, provide a complete description of the fragmentation contributions to the two reactions. Integration of the resultant distribution functions over the complete Chew-Low plot yields fragmentation cross sections increasing approximately as log s ; in addition the observed features of the x , p L and p T 2 projections and of the p L - p T correlation are well-described in the fragmentation regions. Central production contributions are isolated by subtracting the calculated fragmentation distributions
No description provided.
No description provided.
No description provided.
The reaction γ V p → p π + π − was studied in the W , Q 2 region 1.3–2.8 GeV, 0.3–1.4 GeV 2 using the streamer chamber at DESY. A detailed analysis of rho production via γ V p→ ϱ 0 p is presented. Near threshold rho production has peripheral and non-peripheral contributions of comparable magnitude. At higher energies ( W > 2 GeV) the peripheral component is dominant. The Q 2 dependence of σ ( γ V p→ ϱ 0 p) follows that of the rho propagator as predicted by VDM. The slope of d σ /d t at 〈 Q 2 〉 = 0.4 and 0.8 GeV 2 is within errors equal to its value at Q 2 = 0. The overall shape of the ϱ 0 is t dependent as in photoproduction, but is independent of Q 2 . The decay angular distribution shows that longitudinal rhos dominate in the threshold region. At higher energies transverse rhos are dominant. Rho production by transverse photons proceeds almost exclusively by natural parity exchange, σ T N ⩾ (0.83 ± 0.06) σ T for 2.2 < W < 2.8 GeV. The s -channel helicity-flip amplitudes are small compared to non-flip amplitudes. The ratio R = σ L / σ T was determined assuming s -channel helicity conservation. We find R = ξ 2 Q 2 / M ϱ 2 with ξ 2 ≈ 0.4 for 〈 W 〉 = 2.45 GeV. Interference between rho production amplitudes from longitudinal and transverse photons is observed. With increasing energy the phase between the two amplitudes decreases. The observed features of rho electroproduction are consistent with a dominantly diffractive production mechanism for W > 2 GeV.
DIPION CHANNEL CROSS SECTION.
THE TOTAL CROSS SECTION WAS OBTAINED BY THE AUTHORS FROM A FIT TO THE SINGLE ARM DATA OF S. STEIN ET AL., PR D12, 1884 (1975).
No description provided.
The properties of the diffractive peak observed in the mass spectra of systems recoiling against observed high-momentum protons emerging from pp collisions at the CERN ISR have been investigated. The cross sections in this peak have been found to have a steep t dependence which flattens out as | t | increases. The high mass side of the peak varies approximately as 1/ M 2 (where M is the missing mass of the recoiling system) and scales well in terms of the variable M 2 / s . The position of the maximum has been observed to move to lower values of M 2 / s as the kinematic boundary of this variable decreases with increasing s . The measured cross sections, integrated up to M 2 / s =0.05, rise by (15±5)% over the s range 549 to 1464 GeV 2 .
No description provided.
No description provided.
No description provided.
New experimental results are presented on proton-proton elastic scattering in the range of momentum transfer 0.8GeV 2 < − t < 9 GeV 2 at a centre-of-mass energy of √ s = 53 GeV. The data are obtained sing the Split-Field- Magnet Detector at the CERN Intersecting Storage Rings. The cross section has well-known minimum at − t = (1.34±0.02) GeV 2 but no further minimum or change of slope is observed between 2 and 6.5 GeV 2 .
Axis error includes +- 0.0/0.0 contribution (?////THE QUOTED ERRORS ARE THE QUADRATIC SUM OF STATISTICAL AND ESTIMATED SYSTEMATIC ERRORS. THE SYSTEMATIC ERRORS ARE NOT INDEPENDENT FROM BIN TO BIN).