The cross section e + e − → π + π − π o has been measured in the φ energy region and at three other energies (915, 990, 1076 MeV) chosen outside the ω and φ resonances. In the same experiment the energy position and the width of the φ resonance have been determined from the φ →K S o K L o channel. It is found that the magnitude and energy dependence of the experimental cross section are well described by coherent production of ω and φ in the whole energy range 770 to 1076 MeV. Our data clearly show an interference effect which corresponds to an opposite sign between the two products g γω g ω →3 π and g γφ g φ →3 π of the coupling constants.
EXPERIMENTAL CROSS SECTIONS - RADIATIVE CORRECTIONS CAN BE SIGNIFICANT.
The radiative decay models of the φ-meson have been studied: e + e − → φ → ηγ →3 γ ; e + e − → φ → π o γ →3 γ . Cross sections σ φ → ηγ →3 γ and σ φ → π o γ →3 γ have been measured at five energies in the φ-meson energy region and clearly show the φ-resonance in the ηγ → 3 γ mode as well as in the π o γ → 3 γ mode. From a Breit-Wigner fit to the experimental data the values of the branching ratios are deduced: B φ → ηγ = (1.5 ± 0.4) × 10 −2 ; B φ → π o γ = (1.4 ± 0.5) × 10 −3 .
REMOVING RADIATIVE CORRECTIONS, THE PHI PEAK CROSS SECTIONS ARE 66 NB +- 25 PCT <ETA GAMMA> AND 6.5 NB +- 30 PCT <PI0 GAMMA>.
Approximately 12 000 examples of the reaction pp→Δ++(1236)n have been identified at 6 GeV / c in a spark-chamber experiment performed at the Argonne National Laboratory Zero Gradient Synchrotron. The experimental invariant-mass and momentum-transfer-squared distributions are in agreement with predictions of the Chew-Low one-pion-exchange model, suitably modified to account for form factors or absorption. The data have been extrapolated from the physical region to the pion pole. It is found that the Dürr-Pilkuhn and Benecke-Dürr models, in conjunction with quadratic extrapolations in t, reproduce the known on-mass-shell dependence of the cross section for the elastic π+p scattering.
No description provided.
No description provided.
Proton-deuteron elastic scattering has been measured in the four-momentum transfer squared region 0.013<|t|<0.14 (GeV/c)2 and for incident proton beam momenta from 50 to 400 GeV/c. The data can be fitted with the Bethe interference formula. We observe shrinkage of the diffraction cone with increasing energy equal to (0.94±0.04)ln(s1 GeV2) (GeV/c)−2. This shrinkage is greater than that observed in pp elastic scattering. The ratio of the elastic to the total cross section is approximately 0.1 and independent of energy above ∼ 150 GeV. In order to extract information on pn scattering we fit our data using the Glauber approach and a form factor which is the sum of exponentials. The values we obtain for the slope parameter in pn scattering are sensitive to the details of the inelastic double-scattering term.
.
.
.
The possible existence of new vector mesons above the ρ is investigated. The conclusion is that our data are compatible with the existence of the ρ′-meson only if we assume as a firm theoretical prediction the Gounaris-Sakurai tail of the standard ρ-meson. Furthermore our data are compatible with the existence of the ρ″-meson if we assume the validity of the\(\bar p\)p model for the calculation of the multihadron cross-section.
THESE MEASUREMENTS OF THE PION FORM FACTOR ARE GIVEN IN D. BOLLINI ET AL., NCL 14, 418 (1975).
THESE MEASUREMENTS OF THE FOUR CHARGED PION CROSS SECTION ARE GIVEN IN M. BERNARDINI ET AL., PL 53B, 384 (1974).
THESE MEASUREMENTS OF THE TOTAL HADRONIC CROSS SECTION ARE GIVEN IN M. BERNARDINI ET AL., PL 51B, 200 (1974).
Cross sections for e+e−→hadrons, e+e−, and μ+μ− near 3684 MeV are presented. The ψ(3684) resonance is established as having the assignment JPC=1−−. The mass is 3684 ± 5 MeV. The partial width for decay to electrons is Γe=2.1±0.3 keV and the total width is Γ=228±56 keV.
No description provided.
We have found events of the form e++e−→e±+μ∓+missingenergy, in which no other charged particles or photons are detected. Most of these events are detected at or above a center-of-mass energy of 4 GeV. The missing-energy and missing-momentum spectra require that at least two additional particles be produced in each event. We have no conventional explanation for these events.
X IN RE INCLUDES TWO OR MORE UNDETECTED PARTICLES.
The K L o p → K S o p differential and total cross-section and the forward scattering amplitude phase φ have been measured in the 1.5 to 2.3 GeV centre of mass energy range. The data is compared with predictions based on recent K ± N phase shift solutions. Best agreement is found for K + N solutions which do not warrant an I=0 P 1 2 exotic Z ∗ o (1800) baryon.
No description provided.
No description provided.
A search for narrow resonances in the reaction e + e − → hadrons in the mass regions 1915–2345 MeV and 2970–3090 MeV has been perforned at ADONE, the Frascati storage ring. With 90% confidence level our data exclude the production of narrow resonances with integrated cross section larger than 20% of the integrated cross section for production of the J/Ψ (3100 MeV).
No description provided.
The results are presented of two partial-wave analyses of the (3π) − system in 30 000 events of the reaction π − p → π − π − π + p at 11.2 GeV/ c . Both techniques incorporate the assumptions of the isobar model and are (a) the University of Illinois program which fits in terms of the (3π) density matrix elements and (b) an amplitude parametrisaton including possible effects of both spin non-flip and spin flip at the baryon vertex. The results obtained with these independent programs are found to be very close.
NORMALIZED TO A TOTAL REACTION CROSS SECTION OF 1.17 +- 0.24 MB. ALL QUOTED CROSS SECTIONS ARE FOR INTEGRATED BREIT-WIGNERS.
A2 2+D-WAVE FOR 1.2 < M(3PI) < 1.4 GEV. THE FIRST THREE COMBINATIONS OF DENSITY MATRIX ELEMENTS ARE FOR NATURAL PARITY EXCHANGE, AND THE REMAINDER UNNATURAL.