We study the internal structure of a forward-going pπ + π − π + π − system, with invariant mass in the range 2.5-4 GeV, produced through diffractive dissociation of a beam proton at the ISR. The shape of the system, as seen in its center-of-mass, deviates strongly from isotropic phase space and possesses, rather, a longitudinal structure with a major axis along the incoming proton direction. The final state proton momentum is aligned in the direction of the incoming proton, an effect which becomes more pronounced with increasing diffractive mass.
Acceptance corrected distribution of momentum transfer to the diffractive (p-4pi) system. Data requested from authors.
No description provided.
We have studied the reactions K − p → K − π + π − p and K − p → K 0 π − π 0 p at 14.3 GeV/ c using respectively 15 992 and 3723 events. Partial-wave analysis of the region 1.0 < m (K ππ ) < 1.7 GeV have been made using a modified version of the method developed at the University of Illinois.
No description provided.
Photon proton cross sections for elastic light vector meson production, σelνp, inelastic diffractive production, σndνp, non-diffractive production, σdνp, as well as the total cross section, σtotνp, have been measured at an average υp center of mass energy of 180 GeV with the ZEUS detector at HERA. The resulting values are σelνp = 18 ± 7 μb, σdνp = 33 ± 8 μb, σndνp = 91 ± 11 μb, and σtotνp 143 ± 17 μb, where the errors include statistical and systematic errors added in quadrature.
Errors contain both statistics and systematics.
None
No description provided.
We present results from a measurement of double diffraction dissociation in $\bar pp$ collisions at the Fermilab Tevatron collider. The production cross section for events with a central pseudorapidity gap of width $\Delta\eta^0>3$ (overlapping $\eta=0$) is found to be $4.43\pm 0.02{(stat)}{\pm 1.18}{(syst) mb}$ [$3.42\pm 0.01{(stat)}{\pm 1.09}{(syst) mb}$] at $\sqrt{s}=1800$ [630] GeV. Our results are compared with previous measurements and with predictions based on Regge theory and factorization.
Cross sections for double diffractive production.
We present experimental results on a number of K − p reactions at 14.3 GeV/ c that have three bodies in the final state. The final states are K − ω p , K − π p , Λπ + π − , Λ K + K − , Λp p , K ∗ − ω p , Λ(1520) K + K − and Λ(1520) p p . Whenever, with one exception explained by the Zweig rule, there is a K − or a proton in the final state, there is a diffractive-like threshold enhancement in the mass spectrum of the two recoiling particles. These enhancements account for a large fraction of the events in all but the Λπ + π − final state, where they cannot occur, and which is dominated by resonance production. We find evidence for the Q 1 (1300) decaying into K − ω .
THE DIFFRACTION DISSOCIATION CROSS SECTIONS ARE FOR DIFFRACTIVE THRESHOLD ENHANCEMENTS IN THE TWO-BODY MASS SPECTRA (WITHIN 500 MEV CM ENERGY OF THRESHOLD).
We report the first observation of diffractively produced W bosons. In a sample of W -> e nu events produced in p-barp collisions at sqrt{s}=1.8 TeV, we find an excess of events with a forward rapidity gap, which is attributed to diffraction. The probability that this excess is consistent with non-diffractive production is 1.1 10^{-4} (3.8 sigma). The relatively low fraction of W+Jet events observed within this excess implies that mainly quarks from the pomeron, which mediates diffraction, participate in W production. The diffractive to non-diffractive W production ratio is found to be R_W=(1.15 +/- 0.55)%.
No description provided.
None
FOR -T = 0.002 TO 0.05 GEV**2.
None
TWO-PARAMETER FIT TO SLOPE ALSO GIVEN IN PAPER.
No description provided.
The differential cross-sections for the elastic scattering of protons on deuterium have been measured at 600 MeV in the |t| range between 0.003 and 0.030 (GeV/c)2. The results are analysed by using the Bethe and Glauber formalisms taking into account spin effects in deuterium wave function and nucleon-nucleon amplitudes. The ratio between the real and the imaginary parts of the spin-independent protonneutron amplitude αpn deduced from dispersion calculations and phase shift analysis is compared with experimental results.
No description provided.