Date

Collaboration

The exotic meson $\pi_1(1600)$ with $J^{PC} = 1^{-+}$ and its decay into $\rho(770)\pi$

The COMPASS collaboration Alexeev, M.G. ; Alexeev, G.D. ; Amoroso, A. ; et al.
Phys.Rev.D 105 (2022) 012005, 2022.
Inspire Record 1898933 DOI 10.17182/hepdata.114098

We study the spin-exotic $J^{PC} = 1^{-+}$ amplitude in single-diffractive dissociation of 190 GeV$/c$ pions into $\pi^-\pi^-\pi^+$ using a hydrogen target and confirm the $\pi_1(1600) \to \rho(770) \pi$ amplitude, which interferes with a nonresonant $1^{-+}$ amplitude. We demonstrate that conflicting conclusions from previous studies on these amplitudes can be attributed to different analysis models and different treatment of the dependence of the amplitudes on the squared four-momentum transfer and we thus reconcile their experimental findings. We study the nonresonant contributions to the $\pi^-\pi^-\pi^+$ final state using pseudo-data generated on the basis of a Deck model. Subjecting pseudo-data and real data to the same partial-wave analysis, we find good agreement concerning the spectral shape and its dependence on the squared four-momentum transfer for the $J^{PC} = 1^{-+}$ amplitude and also for amplitudes with other $J^{PC}$ quantum numbers. We investigate for the first time the amplitude of the $\pi^-\pi^+$ subsystem with $J^{PC} = 1^{--}$ in the $3\pi$ amplitude with $J^{PC} = 1^{-+}$ employing the novel freed-isobar analysis scheme. We reveal this $\pi^-\pi^+$ amplitude to be dominated by the $\rho(770)$ for both the $\pi_1(1600)$ and the nonresonant contribution. We determine the $\rho(770)$ resonance parameters within the three-pion final state. These findings largely confirm the underlying assumptions for the isobar model used in all previous partial-wave analyses addressing the $J^{PC} = 1^{-+}$ amplitude.

4 data tables

Results for the spin-exotic $1^{-+}1^+[\pi\pi]_{1^{-\,-}}\pi P$ wave from the free-isobar partial-wave analysis performed in the first $t^\prime$ bin from $0.100$ to $0.141\;(\text{GeV}/c)^2$. The plotted values represent the intensity of the coherent sum of the dynamic isobar amplitudes $\{\mathcal{T}_k^\text{fit}\}$ as a function of $m_{3\pi}$, where the coherent sums run over all $m_{\pi^-\pi^+}$ bins indexed by $k$. These intensity values are given in number of events per $40\;\text{MeV}/c^2$ $m_{3\pi}$ interval and correspond to the orange points in Fig. 8(a). In the "Resources" section of this $t^\prime$ bin, we provide the JSON file named <code>transition_amplitudes_tBin_0.json</code> for download, which contains for each $m_{3\pi}$ bin the values of the transition amplitudes $\{\mathcal{T}_k^\text{fit}\}$ for all $m_{\pi^-\pi^+}$ bins, their covariances, and further information. The data in this JSON file are organized in independent bins of $m_{3\pi}$. The information in these bins can be accessed via the key <code>m3pi_bin_<#>_t_prime_bin_0</code>. Each independent $m_{3\pi}$ bin contains <ul> <li>the kinematic ranges of the $(m_{3\pi}, t^\prime)$ cell, which are accessible via the keys <code>m3pi_lower_limit</code>, <code>m3pi_upper_limit</code>, <code>t_prime_lower_limit</code>, and <code>t_prime_upper_limit</code>.</li> <li>the $m_{\pi^-\pi^+}$ bin borders, which are accessible via the keys <code>m2pi_lower_limits</code> and <code>m2pi_upper_limits</code>.</li> <li>the real and imaginary parts of the transition amplitudes $\{\mathcal{T}_k^\text{fit}\}$ for all $m_{\pi^-\pi^+}$ bins, which are accessible via the keys <code>transition_amplitudes_real_part</code> and <code>transition_amplitudes_imag_part</code>, respectively.</li> <li>the covariance matrix of the real and imaginary parts of the $\{\mathcal{T}_k^\text{fit}\}$ for all $m_{\pi^-\pi^+}$ bins, which is accessible via the key <code>covariance_matrix</code>. Note that this matrix is real-valued and that its rows and columns are indexed such that $(\Re,\Im)$ pairs of the transition amplitudes are arranged with increasing $k$.</li> <li>the normalization factors $\mathcal{N}_a$ in Eq. (13) for all $m_{\pi^-\pi^+}$ bins, which are accessible via the key <code>normalization_factors</code>.</li> <li>the shape of the zero mode, i.e., the values of $\tilde\Delta_k$ for all $m_{\pi^-\pi^+}$ bins, which is accessible via the key <code>zero_mode_shape</code>.</li> <li>the reference wave, which is accessible via the key <code>reference_wave</code>. Note that this is always the $4^{++}1^+\rho(770)\pi G$ wave.</li> </ul>

Results for the spin-exotic $1^{-+}1^+[\pi\pi]_{1^{-\,-}}\pi P$ wave from the free-isobar partial-wave analysis performed in the second $t^\prime$ bin from $0.141$ to $0.194\;(\text{GeV}/c)^2$. The plotted values represent the intensity of the coherent sum of the dynamic isobar amplitudes $\{\mathcal{T}_k^\text{fit}\}$ as a function of $m_{3\pi}$, where the coherent sums run over all $m_{\pi^-\pi^+}$ bins indexed by $k$. These intensity values are given in number of events per $40\;\text{MeV}/c^2$ $m_{3\pi}$ interval and correspond to the orange points in Fig. 15(a) in the supplemental material of the paper. In the "Resources" section of this $t^\prime$ bin, we provide the JSON file named <code>transition_amplitudes_tBin_1.json</code> for download, which contains for each $m_{3\pi}$ bin the values of the transition amplitudes $\{\mathcal{T}_k^\text{fit}\}$ for all $m_{\pi^-\pi^+}$ bins, their covariances, and further information. The data in this JSON file are organized in independent bins of $m_{3\pi}$. The information in these bins can be accessed via the key <code>m3pi_bin_<#>_t_prime_bin_1</code>. Each independent $m_{3\pi}$ bin contains <ul> <li>the kinematic ranges of the $(m_{3\pi}, t^\prime)$ cell, which are accessible via the keys <code>m3pi_lower_limit</code>, <code>m3pi_upper_limit</code>, <code>t_prime_lower_limit</code>, and <code>t_prime_upper_limit</code>.</li> <li>the $m_{\pi^-\pi^+}$ bin borders, which are accessible via the keys <code>m2pi_lower_limits</code> and <code>m2pi_upper_limits</code>.</li> <li>the real and imaginary parts of the transition amplitudes $\{\mathcal{T}_k^\text{fit}\}$ for all $m_{\pi^-\pi^+}$ bins, which are accessible via the keys <code>transition_amplitudes_real_part</code> and <code>transition_amplitudes_imag_part</code>, respectively.</li> <li>the covariance matrix of the real and imaginary parts of the $\{\mathcal{T}_k^\text{fit}\}$ for all $m_{\pi^-\pi^+}$ bins, which is accessible via the key <code>covariance_matrix</code>. Note that this matrix is real-valued and that its rows and columns are indexed such that $(\Re,\Im)$ pairs of the transition amplitudes are arranged with increasing $k$.</li> <li>the normalization factors $\mathcal{N}_a$ in Eq. (13) for all $m_{\pi^-\pi^+}$ bins, which are accessible via the key <code>normalization_factors</code>.</li> <li>the shape of the zero mode, i.e., the values of $\tilde\Delta_k$ for all $m_{\pi^-\pi^+}$ bins, which is accessible via the key <code>zero_mode_shape</code>.</li> <li>the reference wave, which is accessible via the key <code>reference_wave</code>. Note that this is always the $4^{++}1^+\rho(770)\pi G$ wave.</li> </ul>

Results for the spin-exotic $1^{-+}1^+[\pi\pi]_{1^{-\,-}}\pi P$ wave from the free-isobar partial-wave analysis performed in the third $t^\prime$ bin from $0.194$ to $0.326\;(\text{GeV}/c)^2$. The plotted values represent the intensity of the coherent sum of the dynamic isobar amplitudes $\{\mathcal{T}_k^\text{fit}\}$ as a function of $m_{3\pi}$, where the coherent sums run over all $m_{\pi^-\pi^+}$ bins indexed by $k$. These intensity values are given in number of events per $40\;\text{MeV}/c^2$ $m_{3\pi}$ interval and correspond to the orange points in Fig. 15(b) in the supplemental material of the paper. In the "Resources" section of this $t^\prime$ bin, we provide the JSON file named <code>transition_amplitudes_tBin_2.json</code> for download, which contains for each $m_{3\pi}$ bin the values of the transition amplitudes $\{\mathcal{T}_k^\text{fit}\}$ for all $m_{\pi^-\pi^+}$ bins, their covariances, and further information. The data in this JSON file are organized in independent bins of $m_{3\pi}$. The information in these bins can be accessed via the key <code>m3pi_bin_<#>_t_prime_bin_2</code>. Each independent $m_{3\pi}$ bin contains <ul> <li>the kinematic ranges of the $(m_{3\pi}, t^\prime)$ cell, which are accessible via the keys <code>m3pi_lower_limit</code>, <code>m3pi_upper_limit</code>, <code>t_prime_lower_limit</code>, and <code>t_prime_upper_limit</code>.</li> <li>the $m_{\pi^-\pi^+}$ bin borders, which are accessible via the keys <code>m2pi_lower_limits</code> and <code>m2pi_upper_limits</code>.</li> <li>the real and imaginary parts of the transition amplitudes $\{\mathcal{T}_k^\text{fit}\}$ for all $m_{\pi^-\pi^+}$ bins, which are accessible via the keys <code>transition_amplitudes_real_part</code> and <code>transition_amplitudes_imag_part</code>, respectively.</li> <li>the covariance matrix of the real and imaginary parts of the $\{\mathcal{T}_k^\text{fit}\}$ for all $m_{\pi^-\pi^+}$ bins, which is accessible via the key <code>covariance_matrix</code>. Note that this matrix is real-valued and that its rows and columns are indexed such that $(\Re,\Im)$ pairs of the transition amplitudes are arranged with increasing $k$.</li> <li>the normalization factors $\mathcal{N}_a$ in Eq. (13) for all $m_{\pi^-\pi^+}$ bins, which are accessible via the key <code>normalization_factors</code>.</li> <li>the shape of the zero mode, i.e., the values of $\tilde\Delta_k$ for all $m_{\pi^-\pi^+}$ bins, which is accessible via the key <code>zero_mode_shape</code>.</li> <li>the reference wave, which is accessible via the key <code>reference_wave</code>. Note that this is always the $4^{++}1^+\rho(770)\pi G$ wave.</li> </ul>

More…

Light isovector resonances in $\pi^- p \to \pi^-\pi^-\pi^+ p$ at 190 GeV/${\it c}$

The COMPASS collaboration Aghasyan, M. ; Alexeev, M.G. ; Alexeev, G.D. ; et al.
Phys.Rev.D 98 (2018) 092003, 2018.
Inspire Record 1655631 DOI 10.17182/hepdata.82958

We have performed the most comprehensive resonance-model fit of $\pi^-\pi^-\pi^+$ states using the results of our previously published partial-wave analysis (PWA) of a large data set of diffractive-dissociation events from the reaction $\pi^- + p \to \pi^-\pi^-\pi^+ + p_\text{recoil}$ with a 190 GeV/$c$ pion beam. The PWA results, which were obtained in 100 bins of three-pion mass, $0.5 < m_{3\pi} < 2.5$ GeV/$c^2$, and simultaneously in 11 bins of the reduced four-momentum transfer squared, $0.1 < t' < 1.0$ $($GeV$/c)^2$, are subjected to a resonance-model fit using Breit-Wigner amplitudes to simultaneously describe a subset of 14 selected waves using 11 isovector light-meson states with $J^{PC} = 0^{-+}$, $1^{++}$, $2^{++}$, $2^{-+}$, $4^{++}$, and spin-exotic $1^{-+}$ quantum numbers. The model contains the well-known resonances $\pi(1800)$, $a_1(1260)$, $a_2(1320)$, $\pi_2(1670)$, $\pi_2(1880)$, and $a_4(2040)$. In addition, it includes the disputed $\pi_1(1600)$, the excited states $a_1(1640)$, $a_2(1700)$, and $\pi_2(2005)$, as well as the resonancelike $a_1(1420)$. We measure the resonance parameters mass and width of these objects by combining the information from the PWA results obtained in the 11 $t'$ bins. We extract the relative branching fractions of the $\rho(770) \pi$ and $f_2(1270) \pi$ decays of $a_2(1320)$ and $a_4(2040)$, where the former one is measured for the first time. In a novel approach, we extract the $t'$ dependence of the intensity of the resonances and of their phases. The $t'$ dependence of the intensities of most resonances differs distinctly from the $t'$ dependence of the nonresonant components. For the first time, we determine the $t'$ dependence of the phases of the production amplitudes and confirm that the production mechanism of the Pomeron exchange is common to all resonances.

2 data tables

Real and imaginary parts of the normalized transition amplitudes $\mathcal{T}_a$ of the 14 selected partial waves in the 1100 $(m_{3\pi}, t')$ cells (see Eq. (12) in the paper). The wave index $a$ represents the quantum numbers that uniquely define the partial wave. The quantum numbers are given by the shorthand notation $J^{PC} M^\varepsilon [$isobar$] \pi L$. We use this notation to label the transition amplitudes in the column headers. The $m_{3\pi}$ values that are given in the first column correspond to the bin centers. Each of the 100 $m_{3\pi}$ bins is 20 MeV/$c^2$ wide. Since the 11 $t'$ bins are non-equidistant, the lower and upper bounds of each $t'$ bin are given in the column headers. The transition amplitudes define the spin-density matrix elements $\varrho_{ab}$ for waves $a$ and $b$ according to Eq. (18). The spin-density matrix enters the resonance-model fit via Eqs. (33) and (34). The transition amplitudes are normalized via Eqs. (9), (16), and (17) such that the partial-wave intensities $\varrho_{aa} = |\mathcal{T}_a|^2$ are given in units of acceptance-corrected number of events. The relative phase $\Delta\phi_{ab}$ between two waves $a$ and $b$ is given by $\arg(\varrho_{ab}) = \arg(\mathcal{T}_a) - \arg(\mathcal{T}_b)$. Note that only relative phases are well-defined. The phase of the $1^{++}0^+ \rho(770) \pi S$ wave was set to $0^\circ$ so that the corresponding transition amplitudes are real-valued. In the PWA model, some waves are excluded in the region of low $m_{3\pi}$ (see paper and [Phys. Rev. D 95, 032004 (2017)] for a detailed description of the PWA model). For these waves, the transition amplitudes are set to zero. The tables with the covariance matrices of the transition amplitudes for all 1100 $(m_{3\pi}, t')$ cells can be downloaded via the 'Additional Resources' for this table.

Decay phase-space volume $I_{aa}$ for the 14 selected partial waves as a function of $m_{3\pi}$, normalized such that $I_{aa}(m_{3\pi} = 2.5~\text{GeV}/c^2) = 1$. The wave index $a$ represents the quantum numbers that uniquely define the partial wave. The quantum numbers are given by the shorthand notation $J^{PC} M^\varepsilon [$isobar$] \pi L$. We use this notation to label the decay phase-space volume in the column headers. The labels are identical to the ones used in the column headers of the table of the transition amplitudes. $I_{aa}$ is calculated using Monte Carlo integration techniques for fixed $m_{3\pi}$ values, which are given in the first column, in the range from 0.5 to 2.5 GeV/$c^2$ in steps of 10 MeV/$c^2$. The statistical uncertainties given for $I_{aa}$ are due to the finite number of Monte Carlo events. $I_{aa}(m_{3\pi})$ is defined in Eq. (6) in the paper and appears in the resonance model in Eqs. (19) and (20).


High Transverse Momentum $\eta$ Production in $\pi^- p$, $\pi^+ p$ and $p p$ Interactions at 280-{GeV}/$c$

The WA70 collaboration Bonesini, M. ; Bonvin, E. ; Booth, P.S. L. ; et al.
Z.Phys.C 42 (1989) 527, 1989.
Inspire Record 267856 DOI 10.17182/hepdata.15526

The inclusive cross sections for η production by the interactions of 280 GeV/c momentum π−, π+, and proton beams in hydrogen have been measured. The kinematical range covered is −0.45

3 data tables

No description provided.

No description provided.

No description provided.


Version 2
High Transverse Momentum Prompt Photon Production by $\pi^-$ and $\pi^+$ on Protons at 280-{GeV}/$c$

The WA70 collaboration Bonesini, M. ; Bonvin, E. ; Boóth, P.S. L. ; et al.
Z.Phys.C 37 (1988) 535, 1988.
Inspire Record 250394 DOI 10.17182/hepdata.15649

The inclusive cross sections for prompt photon production by π− and π+ on protons have been measured with a beam momentum of 280 GeV/c using a fine grained electromagnetic calorimeter and the CERN Omega spectrometer. The transverse momentum and FeynmanxF ranges covered are 4.0

8 data tables

Invariant cross section. UPDATE (03 DEC 2018): systematic error of 4th bin for PT = 4.37 GEV/C corrected from 13.5 to 13.2, slight corrections to PT weighted averages (4.11 -> 4.12, 4.36 -> 4.37, 4.61 -> 4.62, 5.72 -> 5.71, 6.37 -> 6.36).

Invariant cross section. UPDATE (03 DEC 2018): slight corrections to PT weighted averages (5.20 -> 5.21, 5.70 -> 5.71, 6.32 -> 6.34).

PT DISTRIBUTIONS FOR SELECTED XF INTERVALS.

More…

High Transverse Momentum $\pi^0$ Production by $\pi^-$ and $\pi^+$ on Protons at 280-{GeV}/$c$

The WA70 collaboration Bonesini, M. ; Bonvin, E. ; Booth, P.S. L. ; et al.
Z.Phys.C 37 (1987) 39-50, 1987.
Inspire Record 250754 DOI 10.17182/hepdata.15679

The inclusive cross sections for π0 production by π− and π+ on protons have been measured with a beam momentum of 280 GeV/c using a fine grained electromagnetic calorimeter and the CERN Omega spectrometer. The transverse momentum and FeynmanxF ranges covered are 4.0

2 data tables

No description provided.

No description provided.


RESONANCE PRODUCTION IN THE REACTION PI+- P ---> K0(S) K+- P AT 30-GEV/C AND 50-GEV/C

Cleland, W.E. ; Delfosse, A. ; Dorsaz, P.-A. ; et al.
Nucl.Phys.B 208 (1982) 228-261, 1982.
Inspire Record 184972 DOI 10.17182/hepdata.34061

The mass and momentum transfer spectra of the charged K K system produced in the reaction π ± p→K s 0 K ± p are analyzed. The data have been collected at the CERN SPS with the Geneva-Lausanne two-arm, non-magnetic spectrometer at 30 and 50 GeV/ c incident momenta. The general features of the reactions at these energies and the results of partial-wave analyses of the two kaon system are presented. The channel is dominated by the diffractive production of even spin resonances. The spin 4 recurrence of the A 2 (1320) is clearly observed at 2040 MeV ( Γ =380 MeV. A new resonance is observed with a mass M =2450MeV and a width Γ =400 MeV; the quantum numbers of this state are found to be I G ( J PC )=1 −(6 ++ ) . The analysis also shows the decay of the decay of the meson ϱ′(1600) through the K K channel at both energies. The production amplitudes are determined both as a function of the K K effective mass and of the momentum transfer. Isoscalar natural parity exchange is dominant. The energy dependence between 10 and 50 GeV/ c is shown to be well described by a Regge pole model based on the f-dominated pomeron hypothesis. We compare the production mechanisms of the 2 + resonances A 2 (1320) and K ∗ (1430). Finally, we estimate the K K branching ratios of the spin 4 A 2 (2040) and spin 6 A 2 (2450) resonances.

5 data tables

No description provided.

D(SIG)/DT FOR 50 GEV IN RESONANCE REGIONS.

No description provided.

More…

Baryon Exchange in 12-GeV/c pi- p Interactions

Arenton, M.W. ; Bacino, W.J. ; Hauptman, J.M. ; et al.
Nucl.Phys.B 141 (1978) 77-100, 1978.
Inspire Record 136191 DOI 10.17182/hepdata.34942

Final states produced by charged baryon exchange in π − p interactions at 12 GeV/ c laboratory momentum have been studied. Forward neutrons with momenta determined by a calorimeter to be greater than 8.5 ± 1.4 GeV/ c triggered the SLAC 40-inch hydrogen bubble chamber which operated at a 10 Hz expansion rate. We report data on the reactions π − p→n π − π + , π − p→n π − π + π 0 , and π − p→n π − π − π + π + . In π − n π − p→n π + , production of ϱ and f mesons is observed. Differential cross sections are derived and compared with data at lower incident momentum and with theoretical models. In π − p→n π − π + π 0 , ω production is observed with a differential cross section having a deep near u ′= 0.2 (GeV/ c ) 2 . In π − p→n π − π − π + π + , Δ − , ϱ and f production is observed . The observed mass distributions appear to indicate the production of wide resonaces decaying into ϱππ. Some evidence for ϱ-ω interference is also observed.

14 data tables

No description provided.

No description provided.

CORRECTED FOR BACKGROUND.

More…

Differential cross-section for backward pi+ p scattering from 3.25 to 10 gev/c

Bashian, A. ; Finocchiaro, G. ; Good, M.L. ; et al.
Phys.Rev.D 9 (1974) 3193-3196, 1974.
Inspire Record 94286 DOI 10.17182/hepdata.21973

We present differential cross-section data for the reaction π+p→π+p near 180° in the center-of-mass system at beam momenta between 3.25 GeVc and 10 GeVc.

2 data tables

No description provided.

No description provided.


Search for peripheral k+ production in pi- p interactions from 2.75 to 10 gev/c

Bashian, A. ; Finocchiaro, G. ; Good, M.L. ; et al.
Phys.Rev.D 4 (1971) 2680-2683, 1971.
Inspire Record 74755 DOI 10.17182/hepdata.23181

Upper limits are presented for the differential cross section in the reactions π−p→K+Σ− and π−p→K+Y*−(1385) with small momentum transfer from π− to K+.

2 data tables

EXTRAPOLATED TO T=0 ASSUMING SLOPE IS 5 GEV**-2.

ISOTROPIC ANGULAR DISTRIBUTION ASSUMED IN GIVEN T-RANGE.


Study of the reactions pi+ p ---> k+ sigma+ and pi+ p ---> k+ y*+(1385) between 3.5 and 14 gev/c

Bashian, A. ; Finocchiaro, G. ; Good, M.L. ; et al.
Phys.Rev.D 4 (1971) 2667-2679, 1971.
Inspire Record 74763 DOI 10.17182/hepdata.23097

Measurements of the differential cross section for the reactions π+p→K+Σ+ and π+p→K+Y*+(1385) are reported at 3.5, 3.75, 4.0, 4.25, 4.5, 4.75, 5.0, 6.0, 10.0, and 14.0 GeV/c. Polarization in π+p→K+Σ+ is also reported at 6.0, 10.0, and 14.0 GeV/c. At small |t|, the cross section for π+p→K+Σ+ is well described by an exponential Aebt with slopes in the range b≈8−10 (GeV/c)−2; for |t|>0.5 (GeV/c)2 this slope decreases considerably. The cross section for π+p→K+Y*+(1385) is well described for |t|>0.2 (GeV/c)2 by a single exponential of slope about half that for π+p→K+Σ+; there is no break near |t|>0.5 (GeV/c)2. We observe a dip in this cross section near t=0. The polarization in π+p→K+Σ+ is consistent with zero for |t|<0.4 (GeV/c)2 and becomes large and positive for larger |t|.

22 data tables

No description provided.

No description provided.

No description provided.

More…