The reactions π−p→π−p and π−p→π−π0p for 1.7 GeV/c incident π− have been studied, in 3094 and 2244 interactions respectively, identified from 10 106 two-prong events measured in film exposed at the BNL 20 in. hydrogen bubble chamber. The differential elastic-scattering cross-section is found to show a first and second diffraction peak and a first diffraction minimum with indications of a second minimum and onset of a third maximum. The experimental curve has been fitted by a black-dise optical-model formula with radius (0.80±0.03) fm and by a differential cross-section computed from the Dirac equation depending on two ranges, 0.7 fm attractive imaginary and 0.4 fm repulsive. The dominant mode (∼40%) of the π−π0p production is through the two-body channel, π−p→ϱ−p. We find the following cross-sections: σ(π−p→π−p mb, σ(π−p→π−p mb. The differential rhomeson production cross-section shows a diffraction peak having a dependence (dσ/dt)(π−p→ϱ−p)=[(2.5±0.2) exp [(−5.3±0.5)t]] mb/(GeV/c)2, wheret is the squared four0momentum transfer between incoming and outgoing proton in (GeV/c)2, and a second diffraction maximum. It has been fitted by an optical-model formula for a bright ring of radius 0.80 fm and ring thickness 0.25 fm. The cross-section for σ(π−p→π−p was found to be (0.36±0.04) mb. From the inelastic data the Chew-Low dipion scattering cross-section has been computed, using various form factors. A form factor of unity is found to be acceptable.
No description provided.
We present results of measurements of the differential cross sections for the following elastic-scattering reactions: (i) π + p at 5.2 and 7.0 GeV/ c in the range −1 < u < 0.02 (GeV/ c ) 2 , (ii) π − p at 7.0 GeV/ c in the range −0.7 < u < 0.05 (GeV/ c ) 2 , (iii) K + p at 5.2 and 7.0 GeV/ c in the ranges −1 < t < −0.01 (GeV/ c ) 2 and −1 < u < 0 (GeV/ c ) 2 , and K − p at 7.0 GeV/ c in the range −1 < u < 0 (GeV/ c ) 2 .
No description provided.
No description provided.
SIDE GEOMETRY.
The differential elastic scattering cross section for 1.7 GeV/c pion- on protons is evaluated by analysis of Brookhaven 20" bubble chamber film. Primary and secondary diffraction peaks are evident. These are discussed in terms of optical model parameters.
No description provided.
The cross sections for π + π − , K + K − , and K 0 K 0 final states from 2.7 GeV/ c p p interactions are: 28±9 γ b, 3 +6 −3 γb, and < 10 γb respectively. Angular distributions are presented and discussed.
Axis error includes +- 0.0/0.0 contribution (?////Due to contamination by other final states).
The differential elastic scattering cross section for 2.7 GeV c antiprotons on protons has been studied using film from the 20″ BNL hydrogen bubble chamber. The diffraction pattern based on a total sample of 7300 events shows a sharp forward maximum, a first diffraction minimum, and a second maximum. The forward diffraction peak is fitted by ( d σ d t ) elastic =[325 ± 6 mb ( GeV c ) 2 ] exp [−13.3 ± 0.2( GeV c ) −2 t and the total elastic cross section is found to be 25.6 ± 0.6 mb. The first and second diffraction peaks are fitted by the optical model formula for a “black” disc. d σ d t ∼ [j 1 (2k R sin 1 2 θ)] 2 (1 + a cos θ) 2 where R = 1.2 fm and a = −5.
No description provided.
The angular distributions of K+p and π+p backward elastic scattering have been measured at 5.2 and 6.9 GeV/c. Backward π-p and K-p elastic scattering were studied at 6.9 GeV/c. Backward peaks are observed in K+p scattering with an energy dependence of the form s−4.
No description provided.
We employ data taken by the JADE and OPAL experiments for an integrated QCD study in hadronic e+e- annihilations at c.m.s. energies ranging from 35 GeV through 189 GeV. The study is based on jet-multiplicity related observables. The observables are obtained to high jet resolution scales with the JADE, Durham, Cambridge and cone jet finders, and compared with the predictions of various QCD and Monte Carlo models. The strong coupling strength, alpha_s, is determined at each energy by fits of O(alpha_s^2) calculations, as well as matched O(alpha_s^2) and NLLA predictions, to the data. Matching schemes are compared, and the dependence of the results on the choice of the renormalization scale is investigated. The combination of the results using matched predictions gives alpha_s(MZ)=0.1187+{0.0034}-{0.0019}. The strong coupling is also obtained, at lower precision, from O(alpha_s^2) fits of the c.m.s. energy evolution of some of the observables. A qualitative comparison is made between the data and a recent MLLA prediction for mean jet multiplicities.
Overall result for ALPHAS at the Z0 mass from the combination of the ln R-matching results from the observables evolved using a three-loop running expression. The errors shown are total errors and contain all the statistics and systematics.
Weighted mean for ALPHAS at the Z0 mass determined from the energy evolutions of the mean values of the 2-jet cross sections obtained with the JADE and DURHAMschemes and the 3-jet fraction for the JADE, DURHAM and CAMBRIDGE schemes evaluted at a fixed YCUT.. The errors shown are total errors and contain all the statistics and systematics.
Combined results for ALPHA_S from fits of matched predicitions. The first systematic (DSYS) error is the experimental systematic, the second DSYS error isthe hadronization systematic and the third is the QCD scale error. The values of ALPHAS evolved to the Z0 mass using a three-loop evolution are also given.
The strong coupling constant, αs, has been determined in hadronic decays of theZ0 resonance, using measurements of seven observables relating to global event shapes, energy correlatio
Data corrected for finite acceptance and resolution of the detector and for intial state photon radiation. No corrections for hadronic effects are applied.. Errors include statistical and systematic uncertainties, added in quadrature.
Data corrected for finite acceptance and resolution of the detector and for intial state photon radiation. No corrections for hadronic effects are applied.. Errors include statistical and systematic uncertainties, added in quadrature.
Data corrected for finite acceptance and resolution of the detector and for intial state photon radiation. No corrections for hadronic effects are applied.. Errors include statistical and systematic uncertainties, added in quadrature.
An experimental investigation of the structure of identified quark and gluon jets is presented. Observables related to both the global and internal structure of jets are measured; this allows for test
The measured jet broadening distributions (B) in quark and gluon jets seperately.
Measured distributions of -LN(Y2), where Y2 is the differential one-subjet rate, that is the value of the subjet scale parameter where 2 jets appear from the single jet.
The mean subjet multiplicity (-1) for gluon jets and quark jets for different values of the subject resolution parameter Y0.
We have measured the mean charged multiplicity n¯CH as a function of transverse momentum p⊥ of the forward proton in the reaction p+p→p+MM for five intervals of missing mass (MM) using our Multiparticle Argo Spectrometer System. We observe an increase of n¯CH for p⊥>1 GeV/c.
No description provided.