Date

Inclusive cross section and single-transverse-spin asymmetry for very forward neutron production in polarized p+p collisions at sqrt(s)=200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.D 88 (2013) 032006, 2013.
Inspire Record 1185577 DOI 10.17182/hepdata.143074

The energy dependence of the single-transverse-spin asymmetry, A_N, and the cross section for neutron production at very forward angles were measured in the PHENIX experiment at RHIC for polarized p+p collisions at sqrt(s)=200 GeV. The neutrons were observed in forward detectors covering an angular range of up to 2.2 mrad. We report results for neutrons with momentum fraction of x_F=0.45 to 1.0. The energy dependence of the measured cross sections were consistent with x_F scaling, compared to measurements by an ISR experiment which measured neutron production in unpolarized p+p collisions at sqrt(s)=30.6--62.7 GeV. The cross sections for large x_F neutron production for p+p collisions, as well as those in e+p collisions measured at HERA, are described by a pion exchange mechanism. The observed forward neutron asymmetries were large, reaching A_N=-0.08+/-0.02 for x_F=0.8; the measured backward asymmetries, for negative x_F, were consistent with zero. The observed asymmetry for forward neutron production is discussed within the pion exchange framework, with interference between the spin-flip amplitude due to the pion exchange and nonflip amplitudes from all Reggeon exchanges. Within the pion exchange description, the measured neutron asymmetry is sensitive to the contribution of other Reggeon exchanges even for small amplitudes.

3 data tables

The cross section results for forward neutron production in $p$+$p$ collisions at $\sqrt{s}$ = 200 GeV are shown. Two different forms, exponential and Gaussian, were used for the $p_T$ distribution. The integrated $p_T$ region for each bin is 0 < $p_T$ < 0.11$x_F$ GeV/$c$.

The $x_F$ dependence of $A_N$ for neutron production in the ZDC trigger sample.

The $x_F$ dependence of $A_N$ for neutron production for the ZDC$\otimes$BBC trigger sample.


Accurate Test of Chiral Dynamics in the \boldmath$\gamma p \rightarrow \pi^0p$ Reaction

The A2 & CB-TAPS collaborations Hornidge, D. ; Aguar Bartolome, P. ; Annand, J.R.M. ; et al.
Phys.Rev.Lett. 111 (2013) 062004, 2013.
Inspire Record 1203736 DOI 10.17182/hepdata.127967

A precision measurement of the differential cross sections $d\sigma/d\Omega$ and the linearly polarized photon asymmetry $\Sigma \equiv (d\sigma_\perp - d\sigma_\parallel) \slash (d\sigma_\perp + d\sigma_\parallel)$ for the $\vec{\gamma} p \rightarrow \pi^0p$ reaction in the near-threshold region has been performed with a tagged photon beam and almost $4\pi$ detector at the Mainz Microtron. The Glasgow-Mainz photon tagging facility along with the Crystal Ball/TAPS multi-photon detector system and a cryogenic liquid hydrogen target were used. These data allowed for a precise determination of the energy dependence of the real parts of the $S$- and all three $P$-wave amplitudes for the first time and provide the most stringent test to date of the predictions of Chiral Perturbation Theory and its energy region of agreement with experiment.

56 data tables

Differential cross section at W=1.0752268 GeV

Differential cross section at W=1.0773190 GeV

Differential cross section at W=1.0793464 GeV

More…

Medium modification of jet fragmentation in Au+Au collisions at sqrt(s_NN)=200 GeV measured in direct photon-hadron correlations

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 111 (2013) 032301, 2013.
Inspire Record 1207323 DOI 10.17182/hepdata.95877

The jet fragmentation function is measured with direct photon-hadron correlations in p+p and Au+Au collisions at sqrt(s_NN)=200 GeV. The p_T of the photon is an excellent approximation to the initial p_T of the jet and the ratio z_T=p_T^h/p_T^\gamma is used as a proxy for the jet fragmentation function. A statistical subtraction is used to extract the direct photon-hadron yields in Au+Au collisions while a photon isolation cut is applied in p+p. I_ AA, the ratio of jet fragment yield in Au+Au to that in p+p, indicates modification of the jet fragmentation function. Suppression, most likely due to energy loss in the medium, is seen at high z_T. The fragment yield at low z_T is enhanced at large angles. Such a trend is expected from redistribution of the lost energy into increased production of low-momentum particles.

5 data tables

Direct photon-hadron pair per-trigger yields vs Delta-phi (Au+Au and p+p)

Integrated per-trigger yields and I_AA vs xi

Integrated per-trigger yields and I_AA vs xi

More…

Measurement of the g p -> K^0 Sigma^+ reaction with the Crystal Ball/TAPS detectors at the Mainz Microtron

The A2 collaboration Aguar-Bartolome, P. ; Annand, J.R.M. ; Arends, H.J. ; et al.
Phys.Rev.C 88 (2013) 044601, 2013.
Inspire Record 1237227 DOI 10.17182/hepdata.64391

The g p -> K^0 Sigma^+ reaction has been measured from threshold to Eg=1.45 GeV (W_cm=1.9 GeV) using the Crystal Ball and TAPS multiphoton spectrometers together with the photon tagging facility at the Mainz Microtron MAMI. In the present experiment, this reaction was searched for in the 3pi^0 p final state, by assuming K^0_S -> pi^0 pi^0 and Sigma^+ -> pi^0 p. The experimental results include total and differential cross sections as well as the polarization of the recoil hyperon. The new data significantly improve empirical knowledge about the g p -> K^0 Sigma^+ reaction in the measured energy range. The results are compared to previous measurements and model predictions. It is demonstrated that adding the present g p -> K^0 Sigma^+ results to existing data allowed a better description of this reaction with various models.

4 data tables

The differential cross section for photon energies 1125, 1175 and 1225 MeV.

The differential cross section for photon energies 1275, 1325, 1375 and 1425 MeV.

The recoil polarization of the SIGMA+ for photon energy 1125, 1175 and 1225 MeV.

More…

$K^+\Lambda$ and $K^+\Sigma^0$ photoproduction with fine center-of-mass energy resolution

The Crystal Ball at MAMI collaboration Jude, T.C. ; Glazier, D.I. ; Watts, D.P. ; et al.
Phys.Lett.B 735 (2014) 112-118, 2014.
Inspire Record 1250810 DOI 10.17182/hepdata.130796

Measurements of $\gamma p \rightarrow K^{+} \Lambda$ and $\gamma p \rightarrow K^{+} \Sigma^0$ cross-sections have been obtained with the photon tagging facility and the Crystal Ball calorimeter at MAMI-C. The measurement uses a novel $K^+$ meson identification technique in which the weak decay products are characterized using the energy and timing characteristics of the energy deposit in the calorimeter, a method that has the potential to be applied at many other facilities. The fine center-of-mass energy ($W$) resolution and statistical accuracy of the new data results in a significant impact on partial wave analyses aiming to better establish the excitation spectrum of the nucleon. The new analyses disfavor a strong role for quark-diquark dynamics in the nucleon.

26 data tables

Excitation function at cos(Theta_K+)cm = -0.8

Excitation function at cos(Theta_K+)cm = -0.7

Excitation function at cos(Theta_K+)cm = -0.6

More…

System-size dependence of open-heavy-flavor production in nucleus-nucleus collisions at $\sqrt{s_{_{NN}}}$=200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 90 (2014) 034903, 2014.
Inspire Record 1262739 DOI 10.17182/hepdata.143308

The PHENIX Collaboration at the Relativistic Heavy Ion Collider has measured open heavy flavor production in Cu$+$Cu collisions at $\sqrt{s_{_{NN}}}$=200 GeV through the measurement of electrons at midrapidity that originate from semileptonic decays of charm and bottom hadrons. In peripheral Cu$+$Cu collisions an enhanced production of electrons is observed relative to $p$$+$$p$ collisions scaled by the number of binary collisions. In the transverse momentum range from 1 to 5 GeV/$c$ the nuclear modification factor is $R_{AA}$$\sim$1.4. As the system size increases to more central Cu$+$Cu collisions, the enhancement gradually disappears and turns into a suppression. For $p_T>3$ GeV/$c$, the suppression reaches $R_{AA}$$\sim$0.8 in the most central collisions. The $p_T$ and centrality dependence of $R_{AA}$ in Cu$+$Cu collisions agree quantitatively with $R_{AA}$ in $d+$Au and Au$+$Au collisions, if compared at similar number of participating nucleons $\langle N_{\rm part} \rangle$.

16 data tables

The $p_T$ spectra of electrons from the decays of open heavy flavor hadrons produced in Cu+Cu collisions, separated by centrality.

The $p_T$ spectra of electrons from the decays of open heavy flavor hadrons produced in Cu+Cu collisions, separated by centrality.

The $p_T$ spectra of electrons from the decays of open heavy flavor hadrons produced in Cu+Cu collisions, separated by centrality.

More…

Heavy-flavor electron-muon correlations in $p+p$ and $d$+Au collisions at $\sqrt{s_{_{NN}}}$ = 200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 89 (2014) 034915, 2014.
Inspire Record 1263517 DOI 10.17182/hepdata.142078

We report $e^\pm-\mu^\mp$ pair yield from charm decay measured between midrapidity electrons ($|\eta|<0.35$ and $p_T>0.5$ GeV/$c$) and forward rapidity muons ($1.4<\eta<2.1$ and $p_T>1.0$ GeV/$c$) as a function of $\Delta\phi$ in both $p$$+$$p$ and in $d$+Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV. Comparing the $p$$+$$p$ results with several different models, we find the results are consistent with a total charm cross section $\sigma_{c\bar{c}} =$ 538 $\pm$ 46 (stat) $\pm$ 197 (data syst) $\pm$ 174 (model syst) $\mu$b. These generators also indicate that the back-to-back peak at $\Delta\phi = \pi$ is dominantly from the leading order contributions (gluon fusion), while higher order processes (flavor excitation and gluon splitting) contribute to the yield at all $\Delta\phi$. We observe a suppression in the pair yield per collision in $d$+Au. We find the pair yield suppression factor for $2.7<\Delta\phi<3.2$ rad is $J_{dA}$ = 0.433 $\pm$ 0.087 (stat) $\pm$ 0.135 (syst), indicating cold nuclear matter modification of $c\bar{c}$ pairs.

4 data tables

The fully-corrected like-sign-subtracted heavy flavor $e$-$\mu$ pair yield in $p$+$p$.

The fully corrected like-sign-subtracted heavy flavor $e$-$\mu$ pair yield in $d$+Au.

$J_{dA}$ plotted as a function of $\Delta\phi$.

More…

Measurement of transverse-single-spin asymmetries for midrapidity and forward-rapidity production of hadrons in polarized p+p collisions at $\sqrt{s}=$200 and 62.4 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.D 90 (2014) 012006, 2014.
Inspire Record 1268155 DOI 10.17182/hepdata.143306

Measurements of transverse-single-spin asymmetries ($A_{N}$) in $p$$+$$p$ collisions at $\sqrt{s}=$62.4 and 200 GeV with the PHENIX detector at RHIC are presented. At midrapidity, $A_{N}$ is measured for neutral pion and eta mesons reconstructed from diphoton decay, and at forward rapidities, neutral pions are measured using both diphotons and electromagnetic clusters. The neutral-pion measurement of $A_{N}$ at midrapidity is consistent with zero with uncertainties a factor of 20 smaller than previous publications, which will lead to improved constraints on the gluon Sivers function. At higher rapidities, where the valence quark distributions are probed, the data exhibit sizable asymmetries. In comparison with previous measurements in this kinematic region, the new data extend the kinematic coverage in $\sqrt{s}$ and $p_T$, and it is found that the asymmetries depend only weakly on $\sqrt{s}$. The origin of the forward $A_{N}$ is presently not understood quantitatively. The extended reach to higher $p_T$ probes the transition between transverse momentum dependent effects at low $p_T$ and multi-parton dynamics at high $p_T$.

13 data tables

Neutral pion $A_N$ at $\sqrt{s} = 62.4$ GeV as a function of $x_F$ in pseudorapidity $3.1 < |\eta| < 3.5$, with statistical and systematic uncertainties.

Neutral pion $A_N$ at $\sqrt{s} = 62.4$ GeV as a function of $x_F$ in pseudorapidity $3.5 < |\eta| < 3.8$, with statistical and systematic uncertainties.

Neutral pion $A_N$ at $\sqrt{s}$ = 62.4 GeV as function of transverse momentum $p_T$.

More…

Transverse-energy distributions at midrapidity in $p$$+$$p$, $d$$+$Au, and Au$+$Au collisions at $\sqrt{s_{_{NN}}}=62.4$--200~GeV and implications for particle-production models

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 89 (2014) 044905, 2014.
Inspire Record 1273625 DOI 10.17182/hepdata.63512

Measurements of the midrapidity transverse energy distribution, $d\Et/d\eta$, are presented for $p$$+$$p$, $d$$+$Au, and Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV and additionally for Au$+$Au collisions at $\sqrt{s_{_{NN}}}=62.4$ and 130 GeV. The $d\Et/d\eta$ distributions are first compared with the number of nucleon participants $N_{\rm part}$, number of binary collisions $N_{\rm coll}$, and number of constituent-quark participants $N_{qp}$ calculated from a Glauber model based on the nuclear geometry. For Au$+$Au, $\mean{d\Et/d\eta}/N_{\rm part}$ increases with $N_{\rm part}$, while $\mean{d\Et/d\eta}/N_{qp}$ is approximately constant for all three energies. This indicates that the two component ansatz, $dE_{T}/d\eta \propto (1-x) N_{\rm part}/2 + x N_{\rm coll}$, which has been used to represent $E_T$ distributions, is simply a proxy for $N_{qp}$, and that the $N_{\rm coll}$ term does not represent a hard-scattering component in $E_T$ distributions. The $dE_{T}/d\eta$ distributions of Au$+$Au and $d$$+$Au are then calculated from the measured $p$$+$$p$ $E_T$ distribution using two models that both reproduce the Au$+$Au data. However, while the number-of-constituent-quark-participant model agrees well with the $d$$+$Au data, the additive-quark model does not.

43 data tables

Et EMC distributions for sqrt(sNN) = 62.4 GeV Au+Au collisions shown in 5% wide centrality bins.

Et EMC distributions for sqrt(sNN) = 62.4 GeV Au+Au collisions shown in 5% wide centrality bins.

Et EMC distributions for sqrt(sNN) = 62.4 GeV Au+Au collisions shown in 5% wide centrality bins.

More…

Measurement of $\Upsilon$(1S+2S+3S) production in $p$$+$$p$ and Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 91 (2015) 024913, 2015.
Inspire Record 1289084 DOI 10.17182/hepdata.141940

Measurements of bottomonium production in heavy ion and $p$$+$$p$ collisions at the Relativistic Heavy Ion Collider (RHIC) are presented. The inclusive yield of the three $\Upsilon$ states, $\Upsilon(1S+2S+3S)$, was measured in the PHENIX experiment via electron-positron decay pairs at midrapidity for Au$+$Au and $p$$+$$p$ collisions at $\sqrt{s_{_{NN}}}=200$ GeV. The $\Upsilon(1S+2S+3S)\rightarrow e^+e^-$ differential cross section at midrapidity was found to be $B_{\rm ee} d\sigma/dy =$ 108 $\pm$ 38 (stat) $\pm$ 15(syst) $\pm$ 11 (luminosity) pb in $p$$+$$p$ collisions. The nuclear modification factor in the 30\% most central Au$+$Au collisions indicates a suppression of the total $\Upsilon$ state yield relative to the extrapolation from $p$$+$$p$ collision data. The suppression is consistent with measurements made by STAR at RHIC and at higher energies by the CMS experiment at the Large Hadron Collider.

4 data tables

Summary of the measured $\Upsilon$ invariant multiplicities, $BdN/dy$, for one $p + p$ three Au + Au data sets.

Summary of the measured $\Upsilon$ nuclear modification factors, $R_{AA}$, for Au + Au data sets.

Summary of the measured $\Upsilon$ nuclear modification factors, $R_{AA}$, for Au + Au data sets.

More…