We measured the differential cross section for proton-proton elastic scattering at 6 GeV/c, with both initial spins oriented normal to the scattering plane. The analyzing power A shows significant structure with a large broad peak reaching about 24% near P⊥2=1.6 (GeV/c)2. The spin-spin correlation parameter Ann exhibits more dramatic structure, with a small but very sharp peak rising rapidly to about 13% at 90°c.m.. This sharp peak may be caused by particle-identity effects.
No description provided.
The spin-spin correlation parameter CLL=(L, L; 0, 0) has been measured for p−p elastic scattering around θc.m.=90° up to plab=5 GeV/c. An interesting energy dependence is observed in CLL and the results are interpreted by comparison with other available data.
NUMERICAL VALUES OF DATA IN FIGURE SUPPLIED BY A. YOKOSAWA.
We have measured the difference between proton-proton total cross sections for parallel and antiparallel longitudinal spin states [ΔσL=σtot(⇄)−σtot(⇄)] at 13 incident energies between 300 and 800 MeV, which cover the region of possible D21 and F33 diproton resonances. The present experiment has strongly confirmed the structure previously observed at the Argonne Zero Gradient Synchrotron. No additional narrow structure has been found.
No description provided.
The total-cross-section difference in pure longitudinal spin states for p−d interactions has been measured at momenta from 1.1 to 6 GeV/c. Spin-dependent Glauber-type corrections and other corrections have been made to obtain ΔσL(pn) and ΔσL(I=0). These measurements are of fundamental interest and will also help in determining the existence and nature of dibaryon resonances.
CORRECTED FOR BOTH ELASTIC AND BREAKUP COULOMB-NUCLEAR INTERFERENCE. AUTHORS ALSO ESTIMATE DEUTERIUM CORRECTIONS TO DEDUCE CORRESPONDING P N AND I=0 VALUES.
The energy dependence of the spin-parallel and spin-antiparallel cross sections for p↑+p↑→p+p at 90°c.m. was measured for beam momenta between 6 and 12.75 GeV/c. The ratio (dσdt)parallel:(dσdt)antiparallel at 90° is about 1.2 up to 8 GeV/c and then increases rapidly to a value of almost 4 near 11 GeV/c. Our data indicate that this ratio may depend only on the variable P⊥2, and suggests that the ratio may reach a limiting value of about 4 for large P⊥2.
.
.
.
Measurements have been made of the polarisation parameters G and H for the process γ p→ π + n in the photon energy range 600–1875 MeV and pion c.m. angles between 30° and 100°. These data were obtained in a double polarisation experiment, in which the polarised photon beam from the Daresbury electron synchrotron was incident upon a polarised proton target. Theoretical predictions from a current analysis are compared with the data.
No description provided.
No description provided.
No description provided.
Measurement was made of dσdt for n↑+p↑→n+p at P⊥2=0.8 and 1.0 (GeV/c)2 at 6 GeV/c. The 6-GeV/c 53%-polarized neutrons from the 12-GeV/c polarized deuteron beam at the Argonne zero-gradient synchroton were scattered from our 75%-polarized proton target. Both spins were oriented perpendicular to the scattering plane. We found large unexpected spin-spin effects in n−p elastic scattering which are quite different from the p−p spin-spin effects.
No description provided.
Measurements have been made of the double polarisation parameters G and H in the photoproduction of neutral pions from protons, for incident photon energies between 1300 MeV and 2300 MeV and for pion c.m. angles between 50δ and 80δ. The results are compared with predictions from a recent comprehensive analysis of earlier photoproduction data.
No description provided.
No description provided.
No description provided.
Toward the goal of experimentally determining pp elastic scattering amplitudes at 6 GeV/c, we have measured a linear combination of triple-spin correlation parameters and also a linear combination of spintransfer parameters over the |t| range between 0.2 and 1.0 (GeV/c)2. A horizontally polarized beam (S direction) was obtained by precessing the spin of the polarized beam from the Argonne Zero Gradient Synchrotron using a superconducting solenoid. The target protons were polarized vertically (N direction) and the polarization of the recoil protons was measured with a carbon polarimeter. The results are consistent with the amplitude corresponding to π exchange being almost real and positive.
KSS = (S00S) AND HSNS = (SN0S) MEASURED HERE CONTAIN SMALL ADMIXTURES OF THE OTHER SPIN-TRANSFER AND TRIPLE-SPIN CORRELATION PARAMETERS RESPECTIVELY DUE TO THE POLARIZED TARGET MAGNETIC FIELD - SEE TEXT. MEAN VALUE OF HSNS OVER THIS T-RANGE IS 0.098 +- 0.085. PARITY CONSERVATION REQUIRES THE VANISHING OF THE PARAMETERS KSN, HSNN, (000S) AND DNS, WHILE (000N) MUST AGREE WITH THE SINGLE SCATTERING POLARIZATION PARAMETER (0N00).
We have measured the spin-spin correlation parameter CLL=(L, L;0, 0) in p−p elastic scattering around θc.m.=90° from plab=1.0 to 3.0 GeV/c. We observe a rapid energy dependence in CLL and describe our interpretation of the results.
No description provided.
No description provided.
No description provided.