In this Report, QCD results obtained from a study of hadronic event structure in high energy e^+e^- interactions with the L3 detector are presented. The operation of the LEP collider at many different collision energies from 91 GeV to 209 GeV offers a unique opportunity to test QCD by measuring the energy dependence of different observables. The main results concern the measurement of the strong coupling constant, \alpha_s, from hadronic event shapes and the study of effects of soft gluon coherence through charged particle multiplicity and momentum distributions.
Jet fractions using the JADE algorithm as a function of the jet resolution parameter YCUT at c.m. energy 130.1 GeV.
Jet fractions using the JADE algorithm as a function of the jet resolution parameter YCUT at c.m. energy 136.1 GeV.
Jet fractions using the JADE algorithm as a function of the jet resolution parameter YCUT at c.m. energy 161.3 GeV.
The hadronic final states observed with the ALEPH detector at LEP in ${\rm e}^ + {\rm e}^-$ annihilation
Mean charged particle multiplicities at different c.m. energies.
XP distribution at c.m. energy 133.0 GeV.
XP distribution at c.m. energy 161.0 GeV.
The charged-particle multiplicity distribution is measured for all hadronic events as well as for light-quark and b-quark events produced in e+e- collisions at the Z pole. Moments of the charged-particle multiplicity distributions are calculated. The H moments of the multiplicity distributions are studied, and their quasi-oscillations as a function of the rank of the moment are investigated.
Moments of the charged particle multiplicity distribution with KOS and LAMBDA decay for all events.
Moments of the charged particle multiplicity distribution without KOS and LAMBDA decay for all events.
Moments of the charged particle multiplicity distribution with KOS and LAMBDA decay for light quark events.
We have measured the differential production cross sections as a function of scaled momentum x_p=2p/E_cm of the identified hadron species pi+, K+, K0, K*0, phi, p, Lambda0, and of the corresponding antihadron species in inclusive hadronic Z0 decays, as well as separately for Z0 decays into light (u, d, s), c and b flavors. Clear flavor dependences are observed, consistent with expectations based upon previously measured production and decay properties of heavy hadrons. These results were used to test the QCD predictions of Gribov and Lipatov, the predictions of QCD in the Modified Leading Logarithm Approximation with the ansatz of Local Parton-Hadron Duality, and the predictions of three fragmentation models. Ratios of production of different hadron species were also measured as a function of x_p and were used to study the suppression of strange meson, strange and non-strange baryon, and vector meson production in the jet fragmentation process. The light-flavor results provide improved tests of the above predictions, as they remove the contribution of heavy hadron production and decay from that of the rest of the fragmentation process. In addition we have compared hadron and antihadron production as a function of x_p in light quark (as opposed to antiquark) jets. Differences are observed at high x_p, providing direct evidence that higher-momentum hadrons are more likely to contain a primary quark or antiquark. The differences for pseudoscalar and vector kaons provide new measurements of strangeness suppression for high-x_p fragmentation products.
Charged pion fraction and differential cross section per hadron Z0 decay. The last line in the table is the integral over the full X range of the measurement.. There is an additional 1.7 PCT normalization error (included in the integral).
Charged kaon fraction and differential cross section per hadron Z0 decay. The last line in the table is the integral over the full X range of the measurement.. There is an additional 1.7 PCT normalization error (included in the integral).
Proton fraction and differential cross section per hadron Z0 decay. The last line in the table is the integral over the full X range of the measurement.. There is an additional 1.7 PCT normalization error (included in the integral).
We present a measurement of the average b-hadron lifetime τ b at the e + e − collider LEP. Using hadronic Z decays collected in the period from 1991 to 1994, two independent analyses have been performed. In the first one, the b-decay position is reconstructed as a secondary vertex of hadronic b-decay particles. The second analysis is an updated measurement of τ b using the impact parameter of leptons with high momentum and high transverse momentum. The combined result is τ b =[1549±9 (stat) ±15 (syst)] fs . In addition, we measure the average charged b-decay multiplicity 〈 n b 〉 and the normalized average b-energy 〈 x E 〉 b at LEP to be 〈n b 〉=4.90±0.04 (stat)±0.11 (syst), 〈x E 〉 b =0.709±0.004 (stat+syst).
No description provided.
No description provided.
Previously published and as yet unpublished QCD results obtained with the ALEPH detector at LEP1 are presented. The unprecedented statistics allows detailed studies of both perturbative and non-perturbative aspects of strong interactions to be carried out using hadronic Z and tau decays. The studies presented include precise determinations of the strong coupling constant, tests of its flavour independence, tests of the SU(3) gauge structure of QCD, study of coherence effects, and measurements of single-particle inclusive distributions and two-particle correlations for many identified baryons and mesons.
Charged particle sphericity distribution.
Charged particle aplanarity distribution.
Charged particle Thrust distribution.
Average charged multiplicities have been measured separately in $b$, $c$ and light quark ($u,d,s$) events from $Z~0$ decays measured in the SLD experiment. Impact parameters of charged tracks were used to select enriched samples of $b$ and light quark events, and reconstructed charmed mesons were used to select $c$ quark events. We measured the charged multiplicities: $\bar{n}_{uds} = 20.21 \pm 0.10 (\rm{stat.})\pm 0.22(\rm{syst.})$, $\bar{n}_{c} = 21.28 \pm 0.46(\rm{stat.}) ~{+0.41}_{-0.36}(\rm{syst.})$ $\bar{n}_{b} = 23.14 \pm 0.10(\rm{stat.}) ~{+0.38}_{-0.37}(\rm{syst.})$, from which we derived the differences between the total average charged multiplicities of $c$ or $b$ quark events and light quark events: $\Delta \bar{n}_c = 1.07 \pm 0.47(\rm{stat.})~{+0.36}_{-0.30}(\rm{syst.})$ and $\Delta \bar{n}_b = 2.93 \pm 0.14(\rm{stat.})~{+0.30}_{-0.29}(\rm{syst.})$. We compared these measurements with those at lower center-of-mass energies and with perturbative QCD predictions. These combined results are in agreement with the QCD expectations and disfavor the hypothesis of flavor-independent fragmentation.
Average charge multiplicity in B-tagged events.
Average charge multiplicity in C-tagged events.
Average charge multiplicity in light quark (uds) events.
None
Inclusive charged particle distribution as a function of XP.
Inclusive charged particle distribution as a function of rapidity (YRAP).
Inclusive charged particle distribution as a function of PT in the event plane.
We present a study of the structure of hadronic events recorded by the L3 detector at center-of-mass energies of 130 and 136 GeV. The data sample corresponds to an integrated luminosity of 5 pb −1 collected during the high energy run of 1995. The shapes of the event shape distributions and the energy dependence of their mean values are well reproduced by QCD models. From a comparison of the data with resummed O (α s 2 ) QCD calculations, we determine the strong coupling constant to be α s (133 GeV) = 0.107 ± 0.005(exp) ± 0.006(theor).
Mean values of the event shape variables.
Mean charged particle multiplicity.
The value of alpha_s from the fits to the event shape variables : thrust (THRUST), scale heavy jet mass (MH**2/S), total jet broadening (BT)and wide jet broadening (BW). The last value is combined result (COMBINED). The second systematic error is due to uncertainties in the theory.
A study of scaling violations in fragmentation functions performed by the ALEPH collaboration at LEP is presented. Data samples enriched in uds, c, b and gluon jets, respectively, together with measurements of the longitudinal and transverse inclusive cross sections are used to extract the fragmentation function for the gluon and for each flavour. The measurements are compared to data from experiments at energies between 22 GeV and 91 GeV and scaling violations consistent with QCD predictions are observed. From this, a measurement of the strong coupling constant α s ( Mz ) = 0.126 ±0.009 is obtained.
No description provided.
No description provided.
No description provided.