We have measured the cross section of four charged pion production in photon-photon interactions in the invariant mass range 1.0≦Wγγ≦3.2 GeV and up toQ2=16 GeV2. For 1.2 GeV≦Wγγ≦1.7 GeV the process is dominated by ρ0ρ0 production with a rapid rise in cross section around 1.2 GeV, well below the nominal ρ0ρ0 threshold. The observed distributions in the two particle masses and in the production and decay angles are well described by an incoherent sum of the phase-space subprocesses γγ →ρ0ρ0, →ρ0π+π−, and →π+π−π+π−. A spin-parity analysis of the ρ0ρ0 system showsJP=2+ to dominate, although 0+ is also possible forWγγ≦1.4 GeV. Negative partity states are excluded.
Fractions of subprocesses from 3-parameter fit to the no-tag data.
Fractions of subprocesses from 2-parameter fit to the no-tag data in limited energy range. The Q=1R contribution is set equal to zero.
Fractions of subprocesses from 3-parameter fit to the single-tag data.
None
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.
Using the ARGUS detector at DORIS, we observe the production of D ∗+ s mesons in e + e − annihilation through their subsequent decays to a D + s and a photon. Photons which convert in the beam pipe or drift chamber inner wall are used to obtain a high precision measurement of the D ∗+ s -D + s mass difference, while photons detected in the shower counters are used to determine the production cross section, and to provide an independent measurement of the D ∗+ s -D + s mass difference. The observed D ∗+ s - D + s mass difference is 142.5±0.8±1.5 MeV/ c 2 , and σ(e + e − →D ∗+ s X)·BR(D ∗+ s →D + s γ)(·BR(D + s →φπ + ) is 4.4±1.1±1.0 pb at 10.2 GeV. The width of the D ∗+ s is less than 4.5 MeV/ c 2 at 90% confidence level.
Cross sections uncorrected for branching ratios.
The reactions e + e − → μ + μ − and τ + τ − were measured at s =52 GeV and 55 GeV by using the TOPAZ detector at TRISTAN. For the combined data, the observed charge asymmetry is −0.29±0.13 and the total cross section is 27.9±3.0 (stat.)±0.8 (syst.) pb for μ + μ − production, and those for τ + τ − production are −0.20±0.14 and 35.7±4.3 (stat.)±2.4 (syst.)pb, respectively. These values are consistent with predictions by the standard model of electroweak interactions.
.
.
.
Cross sections are measured for 16 O collisions with A1 and Pb. Dependences on beam momentum and atomic number are compared with data obtained at much lower beam momenta.
MODEL DEPENDENT ESTIMATION.
No description provided.
No description provided.
A sample of 29 gu + υ + 35 υ − υ − coming from B B decay have been observed in π -U interactions at 320 GeV energy. The experimental distributions and the total cross section are found to be in good agreement with QCD predictions. The effect of B 0 B 0 mixing is discussed.
BEAUTY INCLUSIVE SPECTRA WAS ASSUMED MN FORM : E*D(SIG)/D(X)/D(PT**2) = EXP(-0.9*PT**2)*(1-ABS(X))**A. THE BEST FIT FOR A IS A = 2.5.
No description provided.
Data from e + e − annihilations at 29 GeV have been used to measure the production cross section and fragmentation function of η mesons. The signal is observed in the η → γγ decay channel. The fragmentation for p η >1.5 GeV/ c agrees well with the prediction of the Lund model, whereas the prediction of the Webber model lies above the data. The mean multiplicity is measured to be 〈 n η 〉=0.58±0.10 η mesons per hadronic event, of which 0.51 represents the direct production of η and η ′ mesons in the fragmentation chain.
Statistical errors only.
Extrapolated to full z range using LUND model.
We present a study of heavy flavour (charm and beauty) production using data collected with the UA1 detector at the CERN Proton-Antiproton collider at a centre-of-mass energy of 630 GeV for an integrated luminosity of 556 nb−1. This follows our earlier study ofb\(\bar b\) andc\(\bar c\) production in dimuon events and the evidence for mixing betweenB0 and\(\bar B^0 \) states. Properties of an inclusive sample of events containing a muon withpT>6 GeV/c are compared with QCD predictions for heavy flavour production, using the ISAJET Monte Carlo program. The predicted largepT muon yield from heavy flavour production and decay agrees with the data to within 30%. For events with a muon ofpT>10 GeV/c and at least one jet withET>10 GeV, we measure the ratio charm/(charm+beauty) to be (24±8±9)%. We also show that the correlations observed between the two heavy quark jets expected by flavour conservation are consistent with the mixture of lowest and higher order QCD processes. We study in detail the topological and kinematic properties of a subsample of events containing a highpT muon and one or more jets. The good agreement of the theoretical predictions with our data in a region dominated by the production of charm and beauty shows that one of the main background sources to a new heavy quark signature is well understood.
No description provided.
Numerical values supplied by K.Wacker. Muon spectrum with at least one jet with PT > 12 GeV/c.
No description provided.
We searched for possible signatures of top-quark production in 508 e+e− hadronic annihilation events collected at s=52 GeV by the TOPAZ detector at the KEK e+e− collider TRISTAN. The observed hadronic cross section and shape of hadronic events are consistent with the standard-model predictions without top quarks. A lower limit (95% confidence level) on the mass of the lightest top meson is set at 25.8 GeV.
No description provided.