From a muon-proton scattering experiment with a streamer chamber at the Stanford Linear Accelerator we present results in the ranges 0.3<Q2<4.7 GeV2 and 1.7<W<4.7 GeV for the reactions μ+p→μpV where V is a vector meson (ρ0, ω, or φ). It is shown that in ρ production the skewing parameter and the longitudinal-transverse ratio change significantly as Q2 increases above 1 GeV2. The cross section for ρ0 production as a function of Q2 falls below the vector-meson-dominance prediction. The ratio of the cross section for exclusive vector-meson production to the total cross section falls by a factor of 10 between photoproduction and a Q2 of 2 GeV2, yet the ratio of ω to ρ production remains constant at the photoproduction value out to Q2>2 GeV2.
OMEGA PRODUCTION COMPARED WITH RHO0 PRODUCTION.
From a large-statistics π+p experiment at 7.1 GeV/c, data are presented on the reactions π+p→ρ0Δ++(1238) and π+p→ωΔ++(1238). Cross sections, differential cross sections, and vector-meson single-density-matrix elements are presented and a general comparison of the production properties of the two reactions is given. In addition to (ρ,ω)Δ++(1238) production there is also strong evidence for production of a π+p enhancement with mass ∼ 1880 MeV, Γ∼200 MeV, and J≥72 produced in association with the ρ and ω resonances. Detailed properties of this structure are presented and its production mechanism is compared with that of the corresponding Δ(1238) reactions. This state is also observed in the reaction K+p→K*0(890)Δ++(1880) at 12.0 GeV/c, for which data are also presented.
No description provided.
In a streamer-chamber experiment at the Stanford Linear Accelerator Center, we observed hadron production in inelastic collisions of 14-GeV positive muons in a liquid hydrogen target. We report on the experiment, the analysis, and the resulting cross sections for hadronic prongs as well as the charged-hadron multiplicity distributions.
No description provided.
No description provided.
Total and differential cross sections of the reaction K−p→Λη have been determined for incident K− lab momenta between 1.2 and 1.7 BeVc. No striking resonance formation in the direct channel is seen; in particular, the Y0*(2100) decays not more than 3% via the Λη channel. A prominent forward peak in the differential cross sections indicates some crossed-channel meson-exchange activity. The branching ratio Γ(η→neutrals)Γ(η→π+π−π0) is 3.6±0.6.
No description provided.
We present the fractional energy distributions for positive and negative hadrons produced in muon-proton and muon-neutron scattering, and ensuing charge ratios for the photon fragmentation region. Data presented for a center-of-mass energy range 2.8<W<4.5 GeV and a virtual-photon mass-squared range 0.5≤Q2≤4.5 GeV2 indicate an overall equality of summed structure functions for neutron and proton targets, which exhibit approximate independence of Q2 and ω′, Implications in terms of quark-fragmentation ideas are discussed.
No description provided.
No description provided.
No description provided.
We present inclusive distributions for final-state hadrons produced in inelastic muon-proton scattering. Over the total energy range 2<W<4.7 GeV and the momentum-transfer range 0.3<Q2<4.5 GeV2, the fractional momentum and energy distributions approximately scale. Distributions in transverse momentum display an interesting two-component behavior. They show no dependence on the virtual-photon "mass squared" Q2, and have average values typical of other hadron-initiated reactions. A comparison of our distributions with those seen in e+e− annihilation and neutrino-nucleon scattering shows agreement, in support of quark-parton fragmentation ideas. We further break these distributions down by event topology.
No description provided.
No description provided.
No description provided.
A πω enhancement at 1245 MeV is observed in the reaction K − p → Σ + π − ω. Its properties agree with those of a B meson produced by natural-parity exchange thus establishing a coupling of the B to a K K ∗ system.
THE DATA FOR B+ PRODUCTION ARE QUOTED FROM CHUNG ET AL., PR D11, 2426 (1975) USING THE SLAC 82 IN HBC. 1.08 < M(PI OMEGA) < 1.38 GEV.
abstract only
No description provided.
No description provided.
No description provided.
Searches for heavy long-lived charged particles are performed using a data sample of 19.8 fb$^{-1}$ from proton-proton collisions at a centre-of-mass energy of $\sqrt{s}$ = 8 TeV collected by the ATLAS detector at the Large Hadron Collider. No excess is observed above the estimated background and limits are placed on the mass of long-lived particles in various supersymmetric models. Long-lived tau sleptons in models with gauge-mediated symmetry breaking are excluded up to masses between 440 and 385 GeV for $\tan\beta$ between 10 and 50, with a 290 GeV limit in the case where only direct tau slepton production is considered. In the context of simplified LeptoSUSY models, where sleptons are stable and have a mass of 300 GeV, squark and gluino masses are excluded up to a mass of 1500 and 1360 GeV, respectively. Directly produced charginos, in simplified models where they are nearly degenerate to the lightest neutralino, are excluded up to a mass of 620 GeV. $R$-hadrons, composites containing a gluino, bottom squark or top squark, are excluded up to a mass of 1270, 845 and 900 GeV, respectively, using the full detector; and up to a mass of 1260, 835 and 870 GeV using an approach disregarding information from the muon spectrometer.
Cross-section upper limits as a function of the $\tilde{\tau}_1$ mass for direct $\tilde{\tau}_1$ production and three values of $\tan\beta$. Expected limits for $\tan\beta=10$ with $\pm 1\sigma$ and $\pm 2\sigma$ uncertainties observed limits for three values of $\tan\beta$ and theoretical cross-section prediction for $\tan\beta=10$ with $\pm 1\sigma$ band.
Cross-section upper limits as a function of the $\tilde{\chi}_1$ mass for $\tilde{\tau}_1$ sleptons resulting from the decay of directly produced charginos and neutralinos in GMSB. Observed limits, expected limits for $\tan\beta=10$ with $\pm 1\sigma$ and $\pm 2\sigma$ uncertainties and theoretical cross-section prediction (dominated by $\tilde{\chi}^0_1 \tilde{\chi}^+_1$ production) with $\pm 1\sigma$ uncertainty. Depending on the hypothesis and to a small extent on $\tan\beta$, in these models, the chargino mass is 210 to 260 GeV higher than the neutralino mass.
Cross-section upper limits for various chargino masses in stable-chargino models. Expected limit with $\pm 1\sigma$ and $\pm 2\sigma$ uncertainties, observed limit and theoretical cross-section prediction with $\pm 1\sigma$ uncertainties.
The production of a $W$ boson decaying to $e\nu$ or $\mu\nu$ in association with a $W$ or $Z$ boson decaying to two jets is studied using $4.6 \mathrm{fb}^{-1}$ of proton--proton collision data at $\sqrt{\rm{s}} = 7$ TeV recorded with the ATLAS detector at the LHC. The combined $WW+WZ$ cross section is measured with a significance of 3.4$\sigma$ and is found to be $68 \pm 7 \ \mathrm{(stat.)} \pm 19 \ \mathrm{(syst.)} \ pb$, in agreement with the Standard Model expectation of $61.1 \pm 2.2 \ \mathrm{pb}$. The distribution of the transverse momentum of the dijet system is used to set limits on anomalous contributions to the triple gauge coupling vertices and on parameters of an effective-field-theory model.
The total and fiducial cross sections for the production of W(LEPTON NU) W(JET JET) or W(LEPTON NU) Z(JET JET). The cross sections are the sum of the WW and WZ processes.