Showing 10 of 16 results
A search for long-lived particles decaying into hadrons is presented. The analysis uses 139 fb$^{-1}$ of $pp$ collision data collected at $\sqrt{s} = 13$ TeV by the ATLAS detector at the LHC using events that contain multiple energetic jets and a displaced vertex. The search employs dedicated reconstruction techniques that significantly increase the sensitivity to long-lived particles decaying in the ATLAS inner detector. Background estimates for Standard Model processes and instrumental effects are extracted from data. The observed event yields are compatible with those expected from background processes. The results are used to set limits at 95% confidence level on model-independent cross sections for processes beyond the Standard Model, and on scenarios with pair-production of supersymmetric particles with long-lived electroweakinos that decay via a small $R$-parity-violating coupling. The pair-production of electroweakinos with masses below 1.5 TeV is excluded for mean proper lifetimes in the range from 0.03 ns to 1 ns. When produced in the decay of $m(\tilde{g})=2.4$ TeV gluinos, electroweakinos with $m(\tilde\chi^0_1)=1.5$ TeV are excluded with lifetimes in the range of 0.02 ns to 4 ns.
<b>Tables of Yields:</b> <a href="?table=validation_regions_yields_highpt_SR">Validation Regions Summary Yields, High-pT jet selections</a> <a href="?table=validation_regions_yields_trackless_SR">Validiation Regions Summary Yields, Trackless jet selections</a> <a href="?table=yields_highpt_SR_observed">Signal region (and sidebands) observed yields, High-pT jet selections</a> <a href="?table=yields_highpt_SR_expected">Signal region (and sidebands) expected yields, High-pT jet selections</a> <a href="?table=yields_trackless_SR_observed">Signal region (and sidebands) observed yields, Trackless jet selections</a> <a href="?table=yields_trackless_SR_expected">Signal region (and sidebands) expected yields, Trackless jet selections</a> <b>Exclusion Contours:</b> <a href="?table=excl_ewk_exp_nominal">EWK RPV signal; expected, nominal</a> <a href="?table=excl_ewk_exp_up">EWK RPV signal; expected, $+1\sigma$</a> <a href="?table=excl_ewk_exp_down">EWK RPV signal; expected, $-1\sigma$</a> <a href="?table=excl_ewk_obs_nominal">EWK RPV signal; observed, nominal</a> <a href="?table=excl_ewk_obs_up">EWK RPV signal; observed, $+1\sigma$</a> <a href="?table=excl_ewk_obs_down">EWK RPV signal; observed, $-1\sigma$</a> <a href="?table=excl_strong_mgluino_2400_GeV_exp_nominal">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; expected, nominal</a> <a href="?table=excl_strong_mgluino_2400_GeV_exp_up">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; expected, $+1\sigma$</a> <a href="?table=excl_strong_mgluino_2400_GeV_exp_down">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; expected, $-1\sigma$</a> <a href="?table=excl_strong_mgluino_2400_GeV_obs_nominal">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; observed, nominal</a> <a href="?table=excl_strong_mgluino_2400_GeV_obs_up">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; observed, $+1\sigma$</a> <a href="?table=excl_strong_mgluino_2400_GeV_obs_down">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; observed, $-1\sigma$</a> <a href="?table=excl_xsec_ewk">EWK RPV signal; cross-section limits for fixed lifetime values.</a> <a href="?table=excl_xsec_strong_mgluino_2400">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; cross-section limits for fixed lifetime values.</a> <a href="?table=excl_strong_mgluino_2000_GeV_exp_nominal">Strong RPV signal, m($\tilde{g}$)=2.0 TeV; expected, nominal</a> <a href="?table=excl_strong_mgluino_2000_GeV_exp_up">Strong RPV signal, m($\tilde{g}$)=2.0 TeV; expected, $+1\sigma$</a> <a href="?table=excl_strong_mgluino_2000_GeV_exp_down">Strong RPV signal, m($\tilde{g}$)=2.0 TeV; expected, $-1\sigma$</a> <a href="?table=excl_strong_mgluino_2000_GeV_obs_nominal">Strong RPV signal, m($\tilde{g}$)=2.0 TeV; observed, nominal</a> <a href="?table=excl_strong_mgluino_2000_GeV_obs_up">Strong RPV signal, m($\tilde{g}$)=2.0 TeV; observed, $+1\sigma$</a> <a href="?table=excl_strong_mgluino_2000_GeV_obs_down">Strong RPV signal, m($\tilde{g}$)=2.0 TeV; observed, $-1\sigma$</a> <a href="?table=excl_strong_mgluino_2200_GeV_exp_nominal">Strong RPV signal, m($\tilde{g}$)=2.2 TeV; expected, nominal</a> <a href="?table=excl_strong_mgluino_2200_GeV_exp_up">Strong RPV signal, m($\tilde{g}$)=2.2 TeV; expected, $+1\sigma$</a> <a href="?table=excl_strong_mgluino_2200_GeV_exp_down">Strong RPV signal, m($\tilde{g}$)=2.2 TeV; expected, $-1\sigma$</a> <a href="?table=excl_strong_mgluino_2200_GeV_obs_nominal">Strong RPV signal, m($\tilde{g}$)=2.2 TeV; observed, nominal</a> <a href="?table=excl_strong_mgluino_2200_GeV_obs_up">Strong RPV signal, m($\tilde{g}$)=2.2 TeV; observed, $+1\sigma$</a> <a href="?table=excl_strong_mgluino_2200_GeV_obs_down">Strong RPV signal, m($\tilde{g}$)=2.2 TeV; observed, $-1\sigma$</a> <a href="?table=excl_strong_mchi0_50_GeV_exp_nominal">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.1 TeV; expected, nominal</a> <a href="?table=excl_strong_mchi0_50_GeV_exp_up">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.1 TeV; expected, $+1\sigma$</a> <a href="?table=excl_strong_mchi0_50_GeV_exp_down">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.1 TeV; expected, $-1\sigma$</a> <a href="?table=excl_strong_mchi0_50_GeV_obs_nominal">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.1 TeV; observed, nominal</a> <a href="?table=excl_strong_mchi0_50_GeV_obs_up">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.1 TeV; observed, $+1\sigma$</a> <a href="?table=excl_strong_mchi0_50_GeV_obs_down">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.1 TeV; observed, $-1\sigma$</a> <a href="?table=excl_strong_mchi0_450_GeV_exp_nominal">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.5 TeV; expected, nominal</a> <a href="?table=excl_strong_mchi0_450_GeV_exp_up">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.5 TeV; expected, $+1\sigma$</a> <a href="?table=excl_strong_mchi0_450_GeV_exp_down">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.5 TeV; expected, $-1\sigma$</a> <a href="?table=excl_strong_mchi0_450_GeV_obs_nominal">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.5 TeV; observed, nominal</a> <a href="?table=excl_strong_mchi0_450_GeV_obs_up">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.5 TeV; observed, $+1\sigma$</a> <a href="?table=excl_strong_mchi0_450_GeV_obs_down">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.5 TeV; observed, $-1\sigma$</a> <a href="?table=excl_strong_tau_0p01_ns_exp_nominal">Strong RPV signal, $\tau$=0.01 ns; expected, nominal</a> <a href="?table=excl_strong_tau_0p01_ns_exp_up">Strong RPV signal, $\tau$=0.01 ns; expected, $+1\sigma$</a> <a href="?table=excl_strong_tau_0p01_ns_exp_down">Strong RPV signal, $\tau$=0.01 ns; expected, $-1\sigma$</a> <a href="?table=excl_strong_tau_0p01_ns_obs_nominal">Strong RPV signal, $\tau$=0.01 ns; observed, nominal</a> <a href="?table=excl_strong_tau_0p01_ns_obs_up">Strong RPV signal, $\tau$=0.01 ns; observed, $+1\sigma$</a> <a href="?table=excl_strong_tau_0p01_ns_obs_down">Strong RPV signal, $\tau$=0.01 ns; observed, $-1\sigma$</a> <a href="?table=excl_strong_tau_0p1_ns_exp_nominal">Strong RPV signal, $\tau$=0.10 ns; expected, nominal</a> <a href="?table=excl_strong_tau_0p1_ns_exp_up">Strong RPV signal, $\tau$=0.10 ns; expected, $+1\sigma$</a> <a href="?table=excl_strong_tau_0p1_ns_exp_down">Strong RPV signal, $\tau$=0.10 ns; expected, $-1\sigma$</a> <a href="?table=excl_strong_tau_0p1_ns_obs_nominal">Strong RPV signal, $\tau$=0.10 ns; observed, nominal</a> <a href="?table=excl_strong_tau_0p1_ns_obs_up">Strong RPV signal, $\tau$=0.10 ns; observed, $+1\sigma$</a> <a href="?table=excl_strong_tau_0p1_ns_obs_down">Strong RPV signal, $\tau$=0.10 ns; observed, $-1\sigma$</a> <a href="?table=excl_strong_tau_1_ns_exp_nominal">Strong RPV signal, $\tau$=1.00 ns; expected, nominal</a> <a href="?table=excl_strong_tau_1_ns_exp_up">Strong RPV signal, $\tau$=1.00 ns; expected, $+1\sigma$</a> <a href="?table=excl_strong_tau_1_ns_exp_down">Strong RPV signal, $\tau$=1.00 ns; expected, $-1\sigma$</a> <a href="?table=excl_strong_tau_1_ns_obs_nominal">Strong RPV signal, $\tau$=1.00 ns; observed, nominal</a> <a href="?table=excl_strong_tau_1_ns_obs_up">Strong RPV signal, $\tau$=1.00 ns; observed, $+1\sigma$</a> <a href="?table=excl_strong_tau_1_ns_obs_down">Strong RPV signal, $\tau$=1.00 ns; observed, $-1\sigma$</a> <a href="?table=excl_strong_tau_10_ns_exp_nominal">Strong RPV signal, $\tau$=10.00 ns; expected, nominal</a> <a href="?table=excl_strong_tau_10_ns_exp_up">Strong RPV signal, $\tau$=10.00 ns; expected, $+1\sigma$</a> <a href="?table=excl_strong_tau_10_ns_exp_down">Strong RPV signal, $\tau$=10.00 ns; expected, $-1\sigma$</a> <a href="?table=excl_strong_tau_10_ns_obs_nominal">Strong RPV signal, $\tau$=10.00 ns; observed, nominal</a> <a href="?table=excl_strong_tau_10_ns_obs_up">Strong RPV signal, $\tau$=10.00 ns; observed, $+1\sigma$</a> <a href="?table=excl_strong_tau_10_ns_obs_down">Strong RPV signal, $\tau$=10.00 ns; observed, $-1\sigma$</a> <a href="?table=excl_xsec_strong_chi0_1250">Strong RPV signal, m($\tilde{\chi}^0_1$)=1.25 TeV; cross-section limits for fixed lifetime values.</a> <br/><b>Reinterpretation Material:</b> See the attached resource (purple button on the left) or directly <a href="https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2016-08/hepdata_info.pdf">this link</a> for information about acceptance definition and about how to use the efficiency histograms below. SLHA files are also available in the reource page of this HEPData record. <a href="?table=acceptance_highpt_strong"> Acceptance cutflow, High-pT SR, Strong production.</a> <a href="?table=acceptance_trackless_ewk"> Acceptance cutflow, Trackless SR, EWK production.</a> <a href="?table=acceptance_trackless_ewk_hf"> Acceptance cutflow, Trackless SR, EWK production with heavy-flavor.</a> <a href="?table=acceptance_highpt_ewk_hf"> Acceptance cutflow, Trackless SR, EWK production with heavy-flavor.</a> <a href="?table=event_efficiency_HighPt_R_1150_mm">Reinterpretation Material: Event-level Efficiency for HighPt SR selections, R < 1150 mm</a> <a href="?table=event_efficiency_HighPt_R_1150_3870_mm">Reinterpretation Material: Event-level Efficiency for HighPt SR selections, R [1150, 3870] mm</a> <a href="?table=event_efficiency_HighPt_R_3870_mm">Reinterpretation Material: Event-level Efficiency for HighPt SR selections, R > 3870 mm</a> <a href="?table=event_efficiency_Trackless_R_1150_mm">Reinterpretation Material: Event-level Efficiency for Trackless SR selections, R < 1150 mm</a> <a href="?table=event_efficiency_Trackless_R_1150_3870_mm">Reinterpretation Material: Event-level Efficiency for Trackless SR selections, R [1150, 3870] mm</a> <a href="?table=event_efficiency_Trackless_R_3870_mm">Reinterpretation Material: Event-level Efficiency for Trackless SR selections, R > 3870 mm</a> <a href="?table=vertex_efficiency_R_22_mm">Reinterpretation Material: Vertex-level Efficiency for R < 22 mm</a> <a href="?table=vertex_efficiency_R_22_25_mm">Reinterpretation Material: Vertex-level Efficiency for R [22, 25] mm</a> <a href="?table=vertex_efficiency_R_25_29_mm">Reinterpretation Material: Vertex-level Efficiency for R [25, 29] mm</a> <a href="?table=vertex_efficiency_R_29_38_mm">Reinterpretation Material: Vertex-level Efficiency for R [29, 38] mm</a> <a href="?table=vertex_efficiency_R_38_46_mm">Reinterpretation Material: Vertex-level Efficiency for R [38, 46] mm</a> <a href="?table=vertex_efficiency_R_46_73_mm">Reinterpretation Material: Vertex-level Efficiency for R [46, 73] mm</a> <a href="?table=vertex_efficiency_R_73_84_mm">Reinterpretation Material: Vertex-level Efficiency for R [73, 84] mm</a> <a href="?table=vertex_efficiency_R_84_111_mm">Reinterpretation Material: Vertex-level Efficiency for R [84, 111] mm</a> <a href="?table=vertex_efficiency_R_111_120_mm">Reinterpretation Material: Vertex-level Efficiency for R [111, 120] mm</a> <a href="?table=vertex_efficiency_R_120_145_mm">Reinterpretation Material: Vertex-level Efficiency for R [120, 145] mm</a> <a href="?table=vertex_efficiency_R_145_180_mm">Reinterpretation Material: Vertex-level Efficiency for R [145, 180] mm</a> <a href="?table=vertex_efficiency_R_180_300_mm">Reinterpretation Material: Vertex-level Efficiency for R [180, 300] mm</a> <br/><b>Cutflow Tables:</b> <a href="?table=cutflow_highpt_strong"> Cutflow (Acceptance x Efficiency), High-pT SR, Strong production.</a> <a href="?table=cutflow_trackless_ewk"> Cutflow (Acceptance x Efficiency), Trackless SR, EWK production.</a> <a href="?table=cutflow_trackless_ewk_hf"> Cutflow (Acceptance x Efficiency), Trackless SR, EWK production with heavy-flavor quarks.</a> <a href="?table=cutflow_highpt_ewk_hf"> Cutflow (Acceptance x Efficiency), High-pT SR, EWK production with heavy-flavor quarks.</a>
Validation of background estimate in validation regions for the High-pT jet selections
Validation of background estimate in validation regions for the Trackless jet selections
Two-dimensional distribution of the invariant mass $m_{DV}$ and the track multiplicity in the High-pT jet SR for observed data events
Two-dimensional distribution of the invariant mass $m_{DV}$ and the track multiplicity in the High-pT jet SR for expected signal events in the strong gluino pair pair production model with m(gluino)=1.8 TeV, m(chi0)=0.2 TeV, tau(chi0)=0.1 ns
Two-dimensional distribution of the invariant mass $m_{DV}$ and the track multiplicity in the Trackless jet SR for observed data events
Two-dimensional distribution of the invariant mass $m_{DV}$ and the track multiplicity in the Trackless jet SR for expected signal events in the electroweak pair production model
Expected exclusion limits at 95% CL on the lifetime and mass of the neutralino in electroweakino pair production models
Expected (+1 sigma) exclusion limits at 95% CL on the lifetime and mass of the neutralino in electroweakino pair production models
Expected (-1 sigma) exclusion limits at 95% CL on the lifetime and mass of the neutralino in electroweakino pair production models
Observed exclusion limits at 95% CL on the lifetime and mass of the neutralino in electroweakino pair production models
Observed (+1 sigma) exclusion limits at 95% CL on the lifetime and mass of the neutralino in electroweakino pair production models
Observed (-1 sigma) exclusion limits at 95% CL on the lifetime and mass of the neutralino in electroweakino pair production models
Expected exclusion limits at 95% CL on the lifetime and mass of the neutralino in strong gluino pair production models and m(gluino)=2.4 TeV
Expected (+1 sigma) exclusion limits at 95% CL on the lifetime and mass of the neutralino in strong gluino pair production models and m(gluino)=2.4 TeV
Expected (-1 sigma) exclusion limits at 95% CL on the lifetime and mass of the neutralino in strong gluino pair production models and m(gluino)=2.4 TeV
Observed exclusion limits at 95% CL on the lifetime and mass of the neutralino in strong gluino pair production models and m(gluino)=2.4 TeV
Observed (+1 sigma) exclusion limits at 95% CL on the lifetime and mass of the neutralino in strong gluino pair production models and m(gluino)=2.4 TeV
Observed (-1 sigma) exclusion limits at 95% CL on the lifetime and mass of the neutralino in strong gluino pair production models and m(gluino)=2.4 TeV
Exclusion limits at 95% CL on the production cross section in the electroweak pair production model.
Exclusion limits at 95% CL on the production cross section in the strong gluino pair production models and m(gluino)=2.4 TeV
Expected exclusion limits at 95% CL on the lifetime and mass of the neutralino in strong gluino pair production models and m(gluino)=2.0 TeV
Expected (+1 sigma) exclusion limits at 95% CL on the lifetime and mass of the neutralino in strong gluino pair production models and m(gluino)=2.0 TeV
Expected (-1 sigma) exclusion limits at 95% CL on the lifetime and mass of the neutralino in strong gluino pair production models and m(gluino)=2.0 TeV
Observed exclusion limits at 95% CL on the lifetime and mass of the neutralino in strong gluino pair production models and m(gluino)=2.0 TeV
Observed (+1 sigma) exclusion limits at 95% CL on the lifetime and mass of the neutralino in strong gluino pair production models and m(gluino)=2.0 TeV
Observed (-1 sigma) exclusion limits at 95% CL on the lifetime and mass of the neutralino in strong gluino pair production models and m(gluino)=2.0 TeV
Expected exclusion limits at 95% CL on the lifetime and mass of the neutralino in strong gluino pair production models and m(gluino)=2.2 TeV
Expected (+1 sigma) exclusion limits at 95% CL on the lifetime and mass of the neutralino in strong gluino pair production models and m(gluino)=2.2 TeV
Expected (-1 sigma) exclusion limits at 95% CL on the lifetime and mass of the neutralino in strong gluino pair production models and m(gluino)=2.2 TeV
Observed exclusion limits at 95% CL on the lifetime and mass of the neutralino in strong gluino pair production models and m(gluino)=2.2 TeV
Observed (+1 sigma) exclusion limits at 95% CL on the lifetime and mass of the neutralino in strong gluino pair production models and m(gluino)=2.2 TeV
Observed (-1 sigma) exclusion limits at 95% CL on the lifetime and mass of the neutralino in strong gluino pair production models and m(gluino)=2.2 TeV
Expected exclusion limits at 95% CL on the lifetime and mass of the gluino in strong gluino pair production models and m(chi0)=50 GeV
Expected (+1 sigma) exclusion limits at 95% CL on the lifetime and mass of the gluino in strong gluino pair production models and m(chi0)=50 GeV
Expected (-1 sigma) exclusion limits at 95% CL on the lifetime and mass of the gluino in strong gluino pair production models and m(chi0)=50 GeV
Observed exclusion limits at 95% CL on the lifetime and mass of the gluino in strong gluino pair production models and m(chi0)=50 GeV
Observed (+1 sigma) exclusion limits at 95% CL on the lifetime and mass of the gluino in strong gluino pair production models and m(chi0)=50 GeV
Observed (-1 sigma) exclusion limits at 95% CL on the lifetime and mass of the gluino in strong gluino pair production models and m(chi0)=50 GeV
Expected exclusion limits at 95% CL on the lifetime and mass of the gluino in strong gluino pair production models and m(chi0)=450 GeV
Expected (+1 sigma) exclusion limits at 95% CL on the lifetime and mass of the gluino in strong gluino pair production models and m(chi0)=450 GeV
Expected (-1 sigma) exclusion limits at 95% CL on the lifetime and mass of the gluino in strong gluino pair production models and m(chi0)=450 GeV
Observed exclusion limits at 95% CL on the lifetime and mass of the gluino in strong gluino pair production models and m(chi0)=450 GeV
Observed (+1 sigma) exclusion limits at 95% CL on the lifetime and mass of the gluino in strong gluino pair production models and m(chi0)=450 GeV
Observed (-1 sigma) exclusion limits at 95% CL on the lifetime and mass of the gluino in strong gluino pair production models and m(chi0)=450 GeV
Expected exclusion limits at 95% CL on the mass of the gluino and neutralino in strong gluino pair production models and tau(chi0)=0.01 ns
Expected (+1 sigma) exclusion limits at 95% CL on the mass of the gluino and neutralino in strong gluino pair production models and tau(chi0)=0.01 ns
Expected (-1 sigma) exclusion limits at 95% CL on the mass of the gluino and neutralino in strong gluino pair production models and tau(chi0)=0.01 ns
Observed exclusion limits at 95% CL on the mass of the gluino and neutralino in strong gluino pair production models and tau(chi0)=0.01 ns
Observed (+1 sigma) exclusion limits at 95% CL on the mass of the gluino and neutralino in strong gluino pair production models and tau(chi0)=0.01 ns
Observed (-1 sigma) exclusion limits at 95% CL on the mass of the gluino and neutralino in strong gluino pair production models and tau(chi0)=0.01 ns
Expected exclusion limits at 95% CL on the mass of the gluino and neutralino in strong gluino pair production models and tau(chi0)=0.1 ns
Expected (+1 sigma) exclusion limits at 95% CL on the mass of the gluino and neutralino in strong gluino pair production models and tau(chi0)=0.1 ns
Expected (-1 sigma) exclusion limits at 95% CL on the mass of the gluino and neutralino in strong gluino pair production models and tau(chi0)=0.1 ns
Observed exclusion limits at 95% CL on the mass of the gluino and neutralino in strong gluino pair production models and tau(chi0)=0.1 ns
Observed (+1 sigma) exclusion limits at 95% CL on the mass of the gluino and neutralino in strong gluino pair production models and tau(chi0)=0.1 ns
Observed (-1 sigma) exclusion limits at 95% CL on the mass of the gluino and neutralino in strong gluino pair production models and tau(chi0)=0.1 ns
Expected exclusion limits at 95% CL on the mass of the gluino and neutralino in strong gluino pair production models and tau(chi0)=1 ns
Expected (+1 sigma) exclusion limits at 95% CL on the mass of the gluino and neutralino in strong gluino pair production models and tau(chi0)=1 ns
Expected (-1 sigma) exclusion limits at 95% CL on the mass of the gluino and neutralino in strong gluino pair production models and tau(chi0)=1 ns
Observed exclusion limits at 95% CL on the mass of the gluino and neutralino in strong gluino pair production models and tau(chi0)=1 ns
Observed (+1 sigma) exclusion limits at 95% CL on the mass of the gluino and neutralino in strong gluino pair production models and tau(chi0)=1 ns
Observed (-1 sigma) exclusion limits at 95% CL on the mass of the gluino and neutralino in strong gluino pair production models and tau(chi0)=1 ns
Expected exclusion limits at 95% CL on the mass of the gluino and neutralino in strong gluino pair production models and tau(chi0)=10 ns
Expected (+1 sigma) exclusion limits at 95% CL on the mass of the gluino and neutralino in strong gluino pair production models and tau(chi0)=10 ns
Expected (-1 sigma) exclusion limits at 95% CL on the mass of the gluino and neutralino in strong gluino pair production models and tau(chi0)=10 ns
Observed exclusion limits at 95% CL on the mass of the gluino and neutralino in strong gluino pair production models and tau(chi0)=10 ns
Observed (+1 sigma) exclusion limits at 95% CL on the mass of the gluino and neutralino in strong gluino pair production models and tau(chi0)=10 ns
Observed (-1 sigma) exclusion limits at 95% CL on the mass of the gluino and neutralino in strong gluino pair production models and tau(chi0)=10 ns
Exclusion limits at 95% CL on the production cross section in the strong gluino pair production models and m($ ilde{\chi}^0_1$)=1.25 TeV
Acceptance cutflow for the High-pT SR for representative points in the strong gluino pair production model. See additional resources for more information.
Acceptance cutflow for the Trackless SR for representative points in the electroweak pair production model. See additional resources for more information.
Acceptance cutflow for the Trackless SR for representative points in the electroweak pair production model with heavy-flavor quarks final state. See additional resources for more information.
Acceptance cutflow for the High-pT SR for representative points in the electroweak pair production model with heavy-flavor quarks final state. See additional resources for more information.
Reinterpretation Material: Event-level Efficiency for HighPt SR selections, R < 1150 mm
Reinterpretation Material: Event-level Efficiency for HighPt SR selections, R [1150, 3870] mm
Reinterpretation Material: Event-level Efficiency for HighPt SR selections, R > 3870 mm
A search for supersymmetric partners of gluons and quarks is presented, involving signatures with jets and either two isolated leptons (electrons or muons) with the same electric charge, or at least three isolated leptons. A data sample of proton-proton collisions at $\sqrt{s}$ = 13 TeV recorded with the ATLAS detector at the Large Hadron Collider between 2015 and 2018, corresponding to a total integrated luminosity of 139 fb$^{-1}$, is used for the search. No significant excess over the Standard Model expectation is observed. The results are interpreted in simplified supersymmetric models featuring both R-parity conservation and R-parity violation, raising the exclusion limits beyond those of previous ATLAS searches to 1600 GeV for gluino masses and 750 GeV for bottom and top squark masses in these scenarios.
Observed 95% CL exclusion contours in signal region Rpc2L0b on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g \to q \bar{q}^{'} \tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm \to W^\pm \tilde{\chi}_2^0$ and $ \tilde{\chi}_2^0 \to Z \tilde{\chi}_1^0$.
Observed 95% CL exclusion contours in signal region Rpc2L0b on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g \to q \bar{q}^{'} \tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm \to W^\pm \tilde{\chi}_2^0$ and $ \tilde{\chi}_2^0 \to Z \tilde{\chi}_1^0$.
Observed 95% CL exclusion contours in signal region Rpc2L0b on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g \to q \bar{q}^{'} \tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm \to W^\pm \tilde{\chi}_2^0$ and $ \tilde{\chi}_2^0 \to Z \tilde{\chi}_1^0$.
Observed 95% CL exclusion contours in signal region Rpc2L0b on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g \to q \bar{q}^{'} \tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm \to W^\pm \tilde{\chi}_2^0$ and $ \tilde{\chi}_2^0 \to Z \tilde{\chi}_1^0$.
Expected 95% CL exclusion contours in signal region Rpc2L0b on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g\to q\bar{q}^{'}\tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_2^0$ and $\tilde{\chi}_2^0\to Z\tilde{\chi}_1^0$.
Expected 95% CL exclusion contours in signal region Rpc2L0b on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g\to q\bar{q}^{'}\tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_2^0$ and $\tilde{\chi}_2^0\to Z\tilde{\chi}_1^0$.
Expected 95% CL exclusion contours in signal region Rpc2L0b on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g\to q\bar{q}^{'}\tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_2^0$ and $\tilde{\chi}_2^0\to Z\tilde{\chi}_1^0$.
Expected 95% CL exclusion contours in signal region Rpc2L0b on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g\to q\bar{q}^{'}\tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_2^0$ and $\tilde{\chi}_2^0\to Z\tilde{\chi}_1^0$.
Observed 95% CL exclusion contours in signal region Rpv2L on the gluino and lightest top squark masses in a SUSY scenario where gluinos are produced in pairs and decay into a top quark and an top squark, which in turn decays via non-zero baryon-number-violating RPV couplings $\lambda^{''}_{313}$, $\tilde g\to t\tilde{t}_1$ followed by $\tilde{t}_1\to b d$.
Observed 95% CL exclusion contours in signal region Rpv2L on the gluino and lightest top squark masses in a SUSY scenario where gluinos are produced in pairs and decay into a top quark and an top squark, which in turn decays via non-zero baryon-number-violating RPV couplings $\lambda^{''}_{313}$, $\tilde g\to t\tilde{t}_1$ followed by $\tilde{t}_1\to b d$.
Observed 95% CL exclusion contours in signal region Rpv2L on the gluino and lightest top squark masses in a SUSY scenario where gluinos are produced in pairs and decay into a top quark and an top squark, which in turn decays via non-zero baryon-number-violating RPV couplings $\lambda^{''}_{313}$, $\tilde g\to t\tilde{t}_1$ followed by $\tilde{t}_1\to b d$.
Observed 95% CL exclusion contours in signal region Rpv2L on the gluino and lightest top squark masses in a SUSY scenario where gluinos are produced in pairs and decay into a top quark and an top squark, which in turn decays via non-zero baryon-number-violating RPV couplings $\lambda^{''}_{313}$, $\tilde g\to t\tilde{t}_1$ followed by $\tilde{t}_1\to b d$.
Expected 95% CL exclusion contours in signal region Rpv2L on the gluino and lightest top squark masses in a SUSY scenario where gluinos are produced in pairs and decay into a top quark and an top squark, which in turn decays via non-zero baryon-number-violating RPV couplings $\lambda^{''}_{313}$, $\tilde g\to t\tilde{t}_1$ followed by $\tilde{t}_1\to b d$.
Expected 95% CL exclusion contours in signal region Rpv2L on the gluino and lightest top squark masses in a SUSY scenario where gluinos are produced in pairs and decay into a top quark and an top squark, which in turn decays via non-zero baryon-number-violating RPV couplings $\lambda^{''}_{313}$, $\tilde g\to t\tilde{t}_1$ followed by $\tilde{t}_1\to b d$.
Expected 95% CL exclusion contours in signal region Rpv2L on the gluino and lightest top squark masses in a SUSY scenario where gluinos are produced in pairs and decay into a top quark and an top squark, which in turn decays via non-zero baryon-number-violating RPV couplings $\lambda^{''}_{313}$, $\tilde g\to t\tilde{t}_1$ followed by $\tilde{t}_1\to b d$.
Expected 95% CL exclusion contours in signal region Rpv2L on the gluino and lightest top squark masses in a SUSY scenario where gluinos are produced in pairs and decay into a top quark and an top squark, which in turn decays via non-zero baryon-number-violating RPV couplings $\lambda^{''}_{313}$, $\tilde g\to t\tilde{t}_1$ followed by $\tilde{t}_1\to b d$.
Observed 95% CL exclusion contours in the best combination of signal regions of Rpc2L1b and Rpc2L2b on the lightest bottom squark and lightest neutralino masses in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$.
Observed 95% CL exclusion contours in the best combination of signal regions of Rpc2L1b and Rpc2L2b on the lightest bottom squark and lightest neutralino masses in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$.
Observed 95% CL exclusion contours in the best combination of signal regions of Rpc2L1b and Rpc2L2b on the lightest bottom squark and lightest neutralino masses in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$.
Observed 95% CL exclusion contours in the best combination of signal regions of Rpc2L1b and Rpc2L2b on the lightest bottom squark and lightest neutralino masses in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$.
Expected 95% CL exclusion contours in the best combination of signal regions of Rpc2L1b and Rpc2L2b on the lightest bottom squark and lightest neutralino masses in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$.
Expected 95% CL exclusion contours in the best combination of signal regions of Rpc2L1b and Rpc2L2b on the lightest bottom squark and lightest neutralino masses in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$.
Expected 95% CL exclusion contours in the best combination of signal regions of Rpc2L1b and Rpc2L2b on the lightest bottom squark and lightest neutralino masses in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$.
Expected 95% CL exclusion contours in the best combination of signal regions of Rpc2L1b and Rpc2L2b on the lightest bottom squark and lightest neutralino masses in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region Rpc2L0b, in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g\to q\bar{q}^{'}\tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_2^0$ and $\tilde{\chi}_2^0\to Z\tilde{\chi}_1^0$. The masses of the superpartners involved in the process are set to $m(\tilde g)$ = 1600 GeV, $m(\tilde \chi_1^\pm)$ = 1200 GeV, $m(\tilde \chi_2^0)$ = 1000 GeV and $m(\tilde \chi_1^0)$ = 800 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region Rpc2L0b, in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g\to q\bar{q}^{'}\tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_2^0$ and $\tilde{\chi}_2^0\to Z\tilde{\chi}_1^0$. The masses of the superpartners involved in the process are set to $m(\tilde g)$ = 1600 GeV, $m(\tilde \chi_1^\pm)$ = 1200 GeV, $m(\tilde \chi_2^0)$ = 1000 GeV and $m(\tilde \chi_1^0)$ = 800 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region Rpc2L0b, in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g\to q\bar{q}^{'}\tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_2^0$ and $\tilde{\chi}_2^0\to Z\tilde{\chi}_1^0$. The masses of the superpartners involved in the process are set to $m(\tilde g)$ = 1600 GeV, $m(\tilde \chi_1^\pm)$ = 1200 GeV, $m(\tilde \chi_2^0)$ = 1000 GeV and $m(\tilde \chi_1^0)$ = 800 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region Rpc2L0b, in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g\to q\bar{q}^{'}\tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_2^0$ and $\tilde{\chi}_2^0\to Z\tilde{\chi}_1^0$. The masses of the superpartners involved in the process are set to $m(\tilde g)$ = 1600 GeV, $m(\tilde \chi_1^\pm)$ = 1200 GeV, $m(\tilde \chi_2^0)$ = 1000 GeV and $m(\tilde \chi_1^0)$ = 800 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region Rpc2L1b, in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$. The masses of the superpartners involved in the process are set to $m(\tilde{b}^{}_1)$ = 850 GeV, $m(\tilde \chi_1^\pm)$ = 500 GeV and $m(\tilde \chi_1^0)$ = 400 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region Rpc2L1b, in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$. The masses of the superpartners involved in the process are set to $m(\tilde{b}^{}_1)$ = 850 GeV, $m(\tilde \chi_1^\pm)$ = 500 GeV and $m(\tilde \chi_1^0)$ = 400 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region Rpc2L1b, in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$. The masses of the superpartners involved in the process are set to $m(\tilde{b}^{}_1)$ = 850 GeV, $m(\tilde \chi_1^\pm)$ = 500 GeV and $m(\tilde \chi_1^0)$ = 400 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region Rpc2L1b, in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$. The masses of the superpartners involved in the process are set to $m(\tilde{b}^{}_1)$ = 850 GeV, $m(\tilde \chi_1^\pm)$ = 500 GeV and $m(\tilde \chi_1^0)$ = 400 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region Rpc2L2b, in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$. The masses of the superpartners involved in the process are set to $m(\tilde{b}^{}_1)$ = 900 GeV, $m(\tilde \chi_1^\pm)$ = 150 GeV and $m(\tilde \chi_1^0)$ = 50 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region Rpc2L2b, in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$. The masses of the superpartners involved in the process are set to $m(\tilde{b}^{}_1)$ = 850 GeV, $m(\tilde \chi_1^\pm)$ = 500 GeV and $m(\tilde \chi_1^0)$ = 400 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region Rpc2L2b, in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$. The masses of the superpartners involved in the process are set to $m(\tilde{b}^{}_1)$ = 900 GeV, $m(\tilde \chi_1^\pm)$ = 150 GeV and $m(\tilde \chi_1^0)$ = 50 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region Rpc2L2b, in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$. The masses of the superpartners involved in the process are set to $m(\tilde{b}^{}_1)$ = 900 GeV, $m(\tilde \chi_1^\pm)$ = 150 GeV and $m(\tilde \chi_1^0)$ = 50 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region Rpc3LSS1b, in a SUSY scenario where pairs of top-antitop squarks are produced and decay into the lightest neutralino via a two-steps cascade, $\tilde t^{}_{1}\to t\tilde{\chi}_2^0$ followed by $\tilde{\chi}_2^0\to \tilde{\chi}_1^\pm W^\mp$ and $\tilde{\chi}_1^\pm\to f\bar{f^{'}}\tilde{\chi}_1^0$. The lightest chargino and the lightest neutralino are assumed to be nearly mass-degenerate. The masses of the superpartners involved in the process are set to $m(\tilde{t}^{}_1)$ = 800 GeV, $m(\tilde \chi_2^0)$ = 625 GeV, $m(\tilde \chi_1^\pm)\approx m(\tilde \chi_1^0)$ = 525 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region Rpc3LSS1b, in a SUSY scenario where pairs of top-antitop squarks are produced and decay into the lightest neutralino via a two-steps cascade, $\tilde t^{}_{1}\to t\tilde{\chi}_2^0$ followed by $\tilde{\chi}_2^0\to \tilde{\chi}_1^\pm W^\mp$ and $\tilde{\chi}_1^\pm\to f\bar{f^{'}}\tilde{\chi}_1^0$. The lightest chargino and the lightest neutralino are assumed to be nearly mass-degenerate. The masses of the superpartners involved in the process are set to $m(\tilde{t}^{}_1)$ = 800 GeV, $m(\tilde \chi_2^0)$ = 625 GeV, $m(\tilde \chi_1^\pm)\approx m(\tilde \chi_1^0)$ = 525 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region Rpc3LSS1b, in a SUSY scenario where pairs of top-antitop squarks are produced and decay into the lightest neutralino via a two-steps cascade, $\tilde t^{}_{1}\to t\tilde{\chi}_2^0$ followed by $\tilde{\chi}_2^0\to \tilde{\chi}_1^\pm W^\mp$ and $\tilde{\chi}_1^\pm\to f\bar{f^{'}}\tilde{\chi}_1^0$. The lightest chargino and the lightest neutralino are assumed to be nearly mass-degenerate. The masses of the superpartners involved in the process are set to $m(\tilde{t}^{}_1)$ = 800 GeV, $m(\tilde \chi_2^0)$ = 625 GeV, $m(\tilde \chi_1^\pm)\approx m(\tilde \chi_1^0)$ = 525 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region Rpc3LSS1b, in a SUSY scenario where pairs of top-antitop squarks are produced and decay into the lightest neutralino via a two-steps cascade, $\tilde t^{}_{1}\to t\tilde{\chi}_2^0$ followed by $\tilde{\chi}_2^0\to \tilde{\chi}_1^\pm W^\mp$ and $\tilde{\chi}_1^\pm\to f\bar{f^{'}}\tilde{\chi}_1^0$. The lightest chargino and the lightest neutralino are assumed to be nearly mass-degenerate. The masses of the superpartners involved in the process are set to $m(\tilde{t}^{}_1)$ = 800 GeV, $m(\tilde \chi_2^0)$ = 625 GeV, $m(\tilde \chi_1^\pm)\approx m(\tilde \chi_1^0)$ = 525 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region Rpv2L, in a SUSY scenario where gluinos are produced in pairs and decay into a top quark and an top squark which in turn decays via non-zero baryon-number-violating RPV couplings $\lambda^{''}_{313}$, $\tilde g\to t\tilde{t}_1$ followed by $\tilde{t}_1\to b d$. The masses of the superpartners involved in the process are set to $m(\tilde g)$ = 1600 GeV, $m(\tilde{t}^{}_{1})$ = 800 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region Rpv2L, in a SUSY scenario where gluinos are produced in pairs and decay into a top quark and an top squark which in turn decays via non-zero baryon-number-violating RPV couplings $\lambda^{''}_{313}$, $\tilde g\to t\tilde{t}_1$ followed by $\tilde{t}_1\to b d$. The masses of the superpartners involved in the process are set to $m(\tilde g)$ = 1600 GeV, $m(\tilde{t}^{}_{1})$ = 800 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region Rpv2L, in a SUSY scenario where gluinos are produced in pairs and decay into a top quark and an top squark which in turn decays via non-zero baryon-number-violating RPV couplings $\lambda^{''}_{313}$, $\tilde g\to t\tilde{t}_1$ followed by $\tilde{t}_1\to b d$. The masses of the superpartners involved in the process are set to $m(\tilde g)$ = 1600 GeV, $m(\tilde{t}^{}_{1})$ = 800 GeV. Only statistical uncertainties are shown.
Number of signal events expected for 139 fb$^{-1}$ at different stages of the event selection for the signal region Rpv2L, in a SUSY scenario where gluinos are produced in pairs and decay into a top quark and an top squark which in turn decays via non-zero baryon-number-violating RPV couplings $\lambda^{''}_{313}$, $\tilde g\to t\tilde{t}_1$ followed by $\tilde{t}_1\to b d$. The masses of the superpartners involved in the process are set to $m(\tilde g)$ = 1600 GeV, $m(\tilde{t}^{}_{1})$ = 800 GeV. Only statistical uncertainties are shown.
Signal acceptance for Rpc2L0b signal region with sensitivity to $pp\to \tilde g\tilde g$ production cross-sections in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g\to q\bar{q}^{'}\tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_2^0$ and $\tilde{\chi}_2^0\to Z\tilde{\chi}_1^0$.
Signal acceptance for Rpc2L0b signal region with sensitivity to $pp\to \tilde g\tilde g$ production cross-sections in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g\to q\bar{q}^{'}\tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_2^0$ and $\tilde{\chi}_2^0\to Z\tilde{\chi}_1^0$.
Signal acceptance for Rpc2L0b signal region with sensitivity to $pp\to \tilde g\tilde g$ production cross-sections in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g\to q\bar{q}^{'}\tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_2^0$ and $\tilde{\chi}_2^0\to Z\tilde{\chi}_1^0$.
Signal acceptance for Rpc2L0b signal region with sensitivity to $pp\to \tilde g\tilde g$ production cross-sections in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g\to q\bar{q}^{'}\tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_2^0$ and $\tilde{\chi}_2^0\to Z\tilde{\chi}_1^0$.
Signal acceptance for Rpc2L1b signal region with sensitivity to $pp\to \tilde{b}^{}_1\tilde{b}^{*}_1$ production cross-sections in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$.
Signal acceptance for Rpc2L1b signal region with sensitivity to $pp\to \tilde{b}^{}_1\tilde{b}^{*}_1$ production cross-sections in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$.
Signal acceptance for Rpc2L1b signal region with sensitivity to $pp\to \tilde{b}^{}_1\tilde{b}^{*}_1$ production cross-sections in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$.
Signal acceptance for Rpc2L1b signal region with sensitivity to $pp\to \tilde{b}^{}_1\tilde{b}^{*}_1$ production cross-sections in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$.
Signal acceptance for Rpc2L2b signal region with sensitivity to $pp\to \tilde{b}^{}_1\tilde{b}^{*}_1$ production cross-sections in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$.
Signal acceptance for Rpc2L2b signal region with sensitivity to $pp\to \tilde{b}^{}_1\tilde{b}^{*}_1$ production cross-sections in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$.
Signal acceptance for Rpc2L2b signal region with sensitivity to $pp\to \tilde{b}^{}_1\tilde{b}^{*}_1$ production cross-sections in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$.
Signal acceptance for Rpc2L2b signal region with sensitivity to $pp\to \tilde{b}^{}_1\tilde{b}^{*}_1$ production cross-sections in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$.
Signal acceptance for Rpv2L signal region with sensitivity to $pp\to \tilde g\tilde g$ production cross-sections in a SUSY scenario where gluinos are produced in pairs and decay into a top quark and an top squark, which in turn decays via non-zero baryon-number-violating RPV couplings $\lambda^{''}_{313}$, $\tilde g\to t\tilde{t}_1$ followed by $\tilde{t}_1\to b d$.
Signal acceptance for Rpv2L signal region with sensitivity to $pp\to \tilde g\tilde g$ production cross-sections in a SUSY scenario where gluinos are produced in pairs and decay into a top quark and an top squark, which in turn decays via non-zero baryon-number-violating RPV couplings $\lambda^{''}_{313}$, $\tilde g\to t\tilde{t}_1$ followed by $\tilde{t}_1\to b d$.
Signal acceptance for Rpv2L signal region with sensitivity to $pp\to \tilde g\tilde g$ production cross-sections in a SUSY scenario where gluinos are produced in pairs and decay into a top quark and an top squark, which in turn decays via non-zero baryon-number-violating RPV couplings $\lambda^{''}_{313}$, $\tilde g\to t\tilde{t}_1$ followed by $\tilde{t}_1\to b d$.
Signal acceptance for Rpv2L signal region with sensitivity to $pp\to \tilde g\tilde g$ production cross-sections in a SUSY scenario where gluinos are produced in pairs and decay into a top quark and an top squark, which in turn decays via non-zero baryon-number-violating RPV couplings $\lambda^{''}_{313}$, $\tilde g\to t\tilde{t}_1$ followed by $\tilde{t}_1\to b d$.
Signal acceptance for Rpc3LSS1b signal region with sensitivity to $pp\to \tilde{t}^{}_\mathrm{1}\tilde{t}^{*}_\mathrm{1}$ production cross-sections in a SUSY scenario where pairs of top-antitop squarks are produced and decay into the lightest neutralino via a two-steps cascade, $\tilde t^{}_{1}\to t\tilde{\chi}_2^0$ followed by $\tilde{\chi}_2^0\to \tilde{\chi}_1^\pm W^\mp$ and $\tilde{\chi}_1^\pm\to f\bar{f^{'}}\tilde{\chi}_1^0$. The lightest chargino and the lightest neutralino are assumed to be nearly mass-degenerate.
Signal acceptance for Rpc3LSS1b signal region with sensitivity to $pp\to \tilde{t}^{}_\mathrm{1}\tilde{t}^{*}_\mathrm{1}$ production cross-sections in a SUSY scenario where pairs of top-antitop squarks are produced and decay into the lightest neutralino via a two-steps cascade, $\tilde t^{}_{1}\to t\tilde{\chi}_2^0$ followed by $\tilde{\chi}_2^0\to \tilde{\chi}_1^\pm W^\mp$ and $\tilde{\chi}_1^\pm\to f\bar{f^{'}}\tilde{\chi}_1^0$. The lightest chargino and the lightest neutralino are assumed to be nearly mass-degenerate.
Signal acceptance for Rpc3LSS1b signal region with sensitivity to $pp\to \tilde{t}^{}_\mathrm{1}\tilde{t}^{*}_\mathrm{1}$ production cross-sections in a SUSY scenario where pairs of top-antitop squarks are produced and decay into the lightest neutralino via a two-steps cascade, $\tilde t^{}_{1}\to t\tilde{\chi}_2^0$ followed by $\tilde{\chi}_2^0\to \tilde{\chi}_1^\pm W^\mp$ and $\tilde{\chi}_1^\pm\to f\bar{f^{'}}\tilde{\chi}_1^0$. The lightest chargino and the lightest neutralino are assumed to be nearly mass-degenerate.
Signal acceptance for Rpc3LSS1b signal region with sensitivity to $pp\to \tilde{t}^{}_\mathrm{1}\tilde{t}^{*}_\mathrm{1}$ production cross-sections in a SUSY scenario where pairs of top-antitop squarks are produced and decay into the lightest neutralino via a two-steps cascade, $\tilde t^{}_{1}\to t\tilde{\chi}_2^0$ followed by $\tilde{\chi}_2^0\to \tilde{\chi}_1^\pm W^\mp$ and $\tilde{\chi}_1^\pm\to f\bar{f^{'}}\tilde{\chi}_1^0$. The lightest chargino and the lightest neutralino are assumed to be nearly mass-degenerate.
Signal efficiency for Rpc2L0b signal region with sensitivity to $pp\to \tilde g\tilde g$ production cross-sections in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g\to q\bar{q}^{'}\tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_2^0$ and $\tilde{\chi}_2^0\to Z\tilde{\chi}_1^0$.
Signal efficiency for Rpc2L0b signal region with sensitivity to $pp\to \tilde g\tilde g$ production cross-sections in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g\to q\bar{q}^{'}\tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_2^0$ and $\tilde{\chi}_2^0\to Z\tilde{\chi}_1^0$.
Signal efficiency for Rpc2L0b signal region with sensitivity to $pp\to \tilde g\tilde g$ production cross-sections in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g\to q\bar{q}^{'}\tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_2^0$ and $\tilde{\chi}_2^0\to Z\tilde{\chi}_1^0$.
Signal efficiency for Rpc2L0b signal region with sensitivity to $pp\to \tilde g\tilde g$ production cross-sections in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g\to q\bar{q}^{'}\tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_2^0$ and $\tilde{\chi}_2^0\to Z\tilde{\chi}_1^0$.
Signal efficiency for Rpc2L1b signal region with sensitivity to $pp\to \tilde{b}^{}_1\tilde{b}^{*}_1$ production cross-sections in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$.
Signal efficiency for Rpc2L1b signal region with sensitivity to $pp\to \tilde{b}^{}_1\tilde{b}^{*}_1$ production cross-sections in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$.
Signal efficiency for Rpc2L1b signal region with sensitivity to $pp\to \tilde{b}^{}_1\tilde{b}^{*}_1$ production cross-sections in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$.
Signal efficiency for Rpc2L1b signal region with sensitivity to $pp\to \tilde{b}^{}_1\tilde{b}^{*}_1$ production cross-sections in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$.
Signal efficiency for Rpc2L2b signal region with sensitivity to $pp\to \tilde{b}^{}_1\tilde{b}^{*}_1$ production cross-sections in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$.
Signal efficiency for Rpc2L2b signal region with sensitivity to $pp\to \tilde{b}^{}_1\tilde{b}^{*}_1$ production cross-sections in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$.
Signal efficiency for Rpc2L2b signal region with sensitivity to $pp\to \tilde{b}^{}_1\tilde{b}^{*}_1$ production cross-sections in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$.
Signal efficiency for Rpc2L2b signal region with sensitivity to $pp\to \tilde{b}^{}_1\tilde{b}^{*}_1$ production cross-sections in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$.
Signal efficiency for Rpv2L signal region with sensitivity to $pp\to \tilde g\tilde g$ production cross-sections in a SUSY scenario where gluinos are produced in pairs and decay into a top quark and an top squark, which in turn decays via non-zero baryon-number-violating RPV couplings $\lambda^{''}_{313}$, $\tilde g\to t\tilde{t}_1$ followed by $\tilde{t}_1\to b d$.
Signal efficiency for Rpv2L signal region with sensitivity to $pp\to \tilde g\tilde g$ production cross-sections in a SUSY scenario where gluinos are produced in pairs and decay into a top quark and an top squark, which in turn decays via non-zero baryon-number-violating RPV couplings $\lambda^{''}_{313}$, $\tilde g\to t\tilde{t}_1$ followed by $\tilde{t}_1\to b d$.
Signal efficiency for Rpv2L signal region with sensitivity to $pp\to \tilde g\tilde g$ production cross-sections in a SUSY scenario where gluinos are produced in pairs and decay into a top quark and an top squark, which in turn decays via non-zero baryon-number-violating RPV couplings $\lambda^{''}_{313}$, $\tilde g\to t\tilde{t}_1$ followed by $\tilde{t}_1\to b d$.
Signal efficiency for Rpv2L signal region with sensitivity to $pp\to \tilde g\tilde g$ production cross-sections in a SUSY scenario where gluinos are produced in pairs and decay into a top quark and an top squark, which in turn decays via non-zero baryon-number-violating RPV couplings $\lambda^{''}_{313}$, $\tilde g\to t\tilde{t}_1$ followed by $\tilde{t}_1\to b d$.
Signal efficiency for Rpc3LSS1b signal region with sensitivity to $pp\to \tilde{t}^{}_\mathrm{1}\tilde{t}^{*}_\mathrm{1}$ production cross-sections in a SUSY scenario where pairs of top-antitop squarks are produced and decay into the lightest neutralino via a two-steps cascade, $\tilde t^{}_{1}\to t\tilde{\chi}_2^0$ followed by $\tilde{\chi}_2^0\to \tilde{\chi}_1^\pm W^\mp$ and $\tilde{\chi}_1^\pm\to f\bar{f^{'}}\tilde{\chi}_1^0$. The lightest chargino and the lightest neutralino are assumed to be nearly mass-degenerate.
Signal efficiency for Rpc3LSS1b signal region with sensitivity to $pp\to \tilde{t}^{}_\mathrm{1}\tilde{t}^{*}_\mathrm{1}$ production cross-sections in a SUSY scenario where pairs of top-antitop squarks are produced and decay into the lightest neutralino via a two-steps cascade, $\tilde t^{}_{1}\to t\tilde{\chi}_2^0$ followed by $\tilde{\chi}_2^0\to \tilde{\chi}_1^\pm W^\mp$ and $\tilde{\chi}_1^\pm\to f\bar{f^{'}}\tilde{\chi}_1^0$. The lightest chargino and the lightest neutralino are assumed to be nearly mass-degenerate.
Signal efficiency for Rpc3LSS1b signal region with sensitivity to $pp\to \tilde{t}^{}_\mathrm{1}\tilde{t}^{*}_\mathrm{1}$ production cross-sections in a SUSY scenario where pairs of top-antitop squarks are produced and decay into the lightest neutralino via a two-steps cascade, $\tilde t^{}_{1}\to t\tilde{\chi}_2^0$ followed by $\tilde{\chi}_2^0\to \tilde{\chi}_1^\pm W^\mp$ and $\tilde{\chi}_1^\pm\to f\bar{f^{'}}\tilde{\chi}_1^0$. The lightest chargino and the lightest neutralino are assumed to be nearly mass-degenerate.
Signal efficiency for Rpc3LSS1b signal region with sensitivity to $pp\to \tilde{t}^{}_\mathrm{1}\tilde{t}^{*}_\mathrm{1}$ production cross-sections in a SUSY scenario where pairs of top-antitop squarks are produced and decay into the lightest neutralino via a two-steps cascade, $\tilde t^{}_{1}\to t\tilde{\chi}_2^0$ followed by $\tilde{\chi}_2^0\to \tilde{\chi}_1^\pm W^\mp$ and $\tilde{\chi}_1^\pm\to f\bar{f^{'}}\tilde{\chi}_1^0$. The lightest chargino and the lightest neutralino are assumed to be nearly mass-degenerate.
Observed 95% CL upper limit on $pp\to \tilde g\tilde g$ production cross-sections in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g\to q\bar{q}^{'}\tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_2^0$ and $\tilde{\chi}_2^0\to Z\tilde{\chi}_1^0$.
Observed 95% CL upper limit on $pp\to \tilde g\tilde g$ production cross-sections in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g\to q\bar{q}^{'}\tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_2^0$ and $\tilde{\chi}_2^0\to Z\tilde{\chi}_1^0$.
Observed 95% CL upper limit on $pp\to \tilde g\tilde g$ production cross-sections in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g\to q\bar{q}^{'}\tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_2^0$ and $\tilde{\chi}_2^0\to Z\tilde{\chi}_1^0$.
Observed 95% CL upper limit on $pp\to \tilde g\tilde g$ production cross-sections in a SUSY scenario where gluinos are produced in pairs and decay into the lightest neutralino via a two-steps cascade, $\tilde g\to q\bar{q}^{'}\tilde{\chi}_1^\pm$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_2^0$ and $\tilde{\chi}_2^0\to Z\tilde{\chi}_1^0$.
Observed 95% CL upper limit on $pp\to \tilde g\tilde g$ production cross-sections in a SUSY scenario where gluinos are produced in pairs and decay into a top quark and an top squark, which in turn decays via non-zero baryon-number-violating RPV couplings $\lambda^{''}_{313}$, $\tilde g\to t\tilde{t}_1$ followed by $\tilde{t}_1\to b d$.
Observed 95% CL upper limit on $pp\to \tilde g\tilde g$ production cross-sections in a SUSY scenario where gluinos are produced in pairs and decay into a top quark and an top squark, which in turn decays via non-zero baryon-number-violating RPV couplings $\lambda^{''}_{313}$, $\tilde g\to t\tilde{t}_1$ followed by $\tilde{t}_1\to b d$.
Observed 95% CL upper limit on $pp\to \tilde g\tilde g$ production cross-sections in a SUSY scenario where gluinos are produced in pairs and decay into a top quark and an top squark, which in turn decays via non-zero baryon-number-violating RPV couplings $\lambda^{''}_{313}$, $\tilde g\to t\tilde{t}_1$ followed by $\tilde{t}_1\to b d$.
Observed 95% CL upper limit on $pp\to \tilde g\tilde g$ production cross-sections in a SUSY scenario where gluinos are produced in pairs and decay into a top quark and an top squark, which in turn decays via non-zero baryon-number-violating RPV couplings $\lambda^{''}_{313}$, $\tilde g\to t\tilde{t}_1$ followed by $\tilde{t}_1\to b d$.
Observed 95% CL upper limit on $pp\to \tilde{b}^{}_1\tilde{b}^{*}_1$ production cross-sections in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$.
Observed 95% CL upper limit on $pp\to \tilde{b}^{}_1\tilde{b}^{*}_1$ production cross-sections in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$.
Observed 95% CL upper limit on $pp\to \tilde{b}^{}_1\tilde{b}^{*}_1$ production cross-sections in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$.
Observed 95% CL upper limit on $pp\to \tilde{b}^{}_1\tilde{b}^{*}_1$ production cross-sections in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$.
Observed 95% CL upper limit on $pp\to \tilde{t}^{}_\mathrm{1}\tilde{t}^{*}_\mathrm{1}$ production cross-sections in a SUSY scenario where pairs of top-antitop squarks are produced and decay into the lightest neutralino via a two-steps cascade, $\tilde t^{}_{1}\to t\tilde{\chi}_2^0$ followed by $\tilde{\chi}_2^0\to \tilde{\chi}_1^\pm W^\mp$ and $\tilde{\chi}_1^\pm\to f\bar{f^{'}}\tilde{\chi}_1^0$. The lightest chargino and the lightest neutralino are assumed to be nearly mass-degenerate.
Observed 95% CL upper limit on $pp\to \tilde{t}^{}_\mathrm{1}\tilde{t}^{*}_\mathrm{1}$ production cross-sections in a SUSY scenario where pairs of top-antitop squarks are produced and decay into the lightest neutralino via a two-steps cascade, $\tilde t^{}_{1}\to t\tilde{\chi}_2^0$ followed by $\tilde{\chi}_2^0\to \tilde{\chi}_1^\pm W^\mp$ and $\tilde{\chi}_1^\pm\to f\bar{f^{'}}\tilde{\chi}_1^0$. The lightest chargino and the lightest neutralino are assumed to be nearly mass-degenerate.
Observed 95% CL upper limit on $pp\to \tilde{t}^{}_\mathrm{1}\tilde{t}^{*}_\mathrm{1}$ production cross-sections in a SUSY scenario where pairs of top-antitop squarks are produced and decay into the lightest neutralino via a two-steps cascade, $\tilde t^{}_{1}\to t\tilde{\chi}_2^0$ followed by $\tilde{\chi}_2^0\to \tilde{\chi}_1^\pm W^\mp$ and $\tilde{\chi}_1^\pm\to f\bar{f^{'}}\tilde{\chi}_1^0$. The lightest chargino and the lightest neutralino are assumed to be nearly mass-degenerate.
Observed 95% CL upper limit on $pp\to \tilde{t}^{}_\mathrm{1}\tilde{t}^{*}_\mathrm{1}$ production cross-sections in a SUSY scenario where pairs of top-antitop squarks are produced and decay into the lightest neutralino via a two-steps cascade, $\tilde t^{}_{1}\to t\tilde{\chi}_2^0$ followed by $\tilde{\chi}_2^0\to \tilde{\chi}_1^\pm W^\mp$ and $\tilde{\chi}_1^\pm\to f\bar{f^{'}}\tilde{\chi}_1^0$. The lightest chargino and the lightest neutralino are assumed to be nearly mass-degenerate.
Best observed 95% CL exclusion contours selected from Rpc2L1b and Rpc2L2b on the lightest bottom squark and lightest neutralino masses in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$.
Best observed 95% CL exclusion contours selected from Rpc2L1b and Rpc2L2b on the lightest bottom squark and lightest neutralino masses in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$.
Best observed 95% CL exclusion contours selected from Rpc2L1b and Rpc2L2b on the lightest bottom squark and lightest neutralino masses in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$.
Best observed 95% CL exclusion contours selected from Rpc2L1b and Rpc2L2b on the lightest bottom squark and lightest neutralino masses in a SUSY scenario where pairs of bottom-antibottom squarks are produced and decay into the lightest neutralino via a chargino, $\tilde b^{}_{1}\to t\tilde{\chi}_1^-$ followed by $\tilde{\chi}_1^\pm\to W^\pm\tilde{\chi}_1^0$.
N-1 distributions for $E_{\mathrm{T}}^{\mathrm{miss}}$ of observed data and expected background towards Rpc2L0b from publication's Figure 5 . The last bin is inclusive.
N-1 distributions for $E_{\mathrm{T}}^{\mathrm{miss}}$ of observed data and expected background towards Rpc2L0b from publication's Figure 5 . The last bin is inclusive.
N-1 distributions for $E_{\mathrm{T}}^{\mathrm{miss}}$ of observed data and expected background towards Rpc2L0b from publication's Figure 5 . The last bin is inclusive.
N-1 distributions for $E_{\mathrm{T}}^{\mathrm{miss}}$ of observed data and expected background towards Rpc2L0b from publication's Figure 5 . The last bin is inclusive.
N-1 distributions for $E_{\mathrm{T}}^{\mathrm{miss}} / m_{\mathrm{eff}}$ of observed data and expected background towards Rpc2L1b from publication's Figure 5 . The last bin is inclusive.
N-1 distributions for $E_{\mathrm{T}}^{\mathrm{miss}} / m_{\mathrm{eff}}$ of observed data and expected background towards Rpc2L1b from publication's Figure 5 . The last bin is inclusive.
N-1 distributions for $E_{\mathrm{T}}^{\mathrm{miss}} / m_{\mathrm{eff}}$ of observed data and expected background towards Rpc2L1b from publication's Figure 5 . The last bin is inclusive.
N-1 distributions for $E_{\mathrm{T}}^{\mathrm{miss}} / m_{\mathrm{eff}}$ of observed data and expected background towards Rpc2L1b from publication's Figure 5 . The last bin is inclusive.
N-1 distributions for $E_{\mathrm{T}}^{\mathrm{miss}}$ of observed data and expected background towards Rpc2L2b from publication's Figure 5 . The last bin is inclusive.
N-1 distributions for $E_{\mathrm{T}}^{\mathrm{miss}}$ of observed data and expected background towards Rpc2L2b from publication's Figure 5 . The last bin is inclusive.
N-1 distributions for $E_{\mathrm{T}}^{\mathrm{miss}}$ of observed data and expected background towards Rpc2L2b from publication's Figure 5 . The last bin is inclusive.
N-1 distributions for $E_{\mathrm{T}}^{\mathrm{miss}}$ of observed data and expected background towards Rpc2L2b from publication's Figure 5 . The last bin is inclusive.
N-1 distributions for $m_{\mathrm{eff}}$ of observed data and expected background towards Rpv2L from publication's Figure 5 . The last bin is inclusive.
N-1 distributions for $m_{\mathrm{eff}}$ of observed data and expected background towards Rpv2L from publication's Figure 5 . The last bin is inclusive.
N-1 distributions for $m_{\mathrm{eff}}$ of observed data and expected background towards Rpv2L from publication's Figure 5 . The last bin is inclusive.
N-1 distributions for $m_{\mathrm{eff}}$ of observed data and expected background towards Rpv2L from publication's Figure 5 . The last bin is inclusive.
Two related searches for phenomena beyond the standard model (BSM) are performed using events with hadronic jets and significant transverse momentum imbalance. The results are based on a sample of proton-proton collisions at a center-of-mass energy of 13 TeV, collected by the CMS experiment at the LHC in 2016-2018 and corresponding to an integrated luminosity of 137 fb$^{-1}$. The first search is inclusive, based on signal regions defined by the hadronic energy in the event, the jet multiplicity, the number of jets identified as originating from bottom quarks, and the value of the kinematic variable $M_\mathrm{T2}$ for events with at least two jets. For events with exactly one jet, the transverse momentum of the jet is used instead. The second search looks in addition for disappearing tracks produced by BSM long-lived charged particles that decay within the volume of the tracking detector. No excess event yield is observed above the predicted standard model background. This is used to constrain a range of BSM models that predict the following: the pair production of gluinos and squarks in the context of supersymmetry models conserving $R$-parity, with or without intermediate long-lived charginos produced in the decay chain; the resonant production of a colored scalar state decaying to a massive Dirac fermion and a quark; or the pair production of scalar and vector leptoquarks each decaying to a neutrino and a top, bottom, or light-flavor quark. In most of the cases, the results obtained are the most stringent constraints to date.
Definitions of super signal regions, along with predictions, observed data, and the observed 95% CL upper limits on the number of signal events contributing to each region ($N_{95}^\mathrm{max}$). The limits are given under assumptions of 0% and 15% for the uncertainty on the signal acceptance. All selection criteria as in the full analysis are applied. For regions with $N_\mathrm{j}=1$, $H_\mathrm{T}\equiv p_\mathrm{T}^\mathrm{jet}$.
Exclusion limits at 95% CL for direct gluino pair production, where the gluinos decay to light-flavor quarks ($\tilde{g}\to q\bar{q}\tilde{\chi}_1^0$). Signal cross sections are calculated at approximately NNLO+NNLL order in $\alpha_S$, assuming unity branching fraction to $q\bar{q}\tilde{\chi}_1^0$.
Exclusion limits at 95% CL for direct gluino pair production, where the gluinos decay to light-flavor quarks and either a $\tilde{\chi}_2^0$ that decays to $Z\tilde{\chi}_1^0$ (1/3 of the time), or a $\tilde{\chi}_1^\pm$ that decays to $W^\pm\tilde{\chi}_1^0$ (2/3 of the time). Signal cross sections are calculated at approximately NNLO+NNLL order in $\alpha_S$, assuming unity branching fraction to $q_i\bar{q}_j V\tilde{\chi}_1^0$.
Exclusion limits at 95% CL for direct gluino pair production, where the gluinos decay to light-flavor quarks and a $\tilde{\chi}_1^\pm$ that decays to $W^\pm\tilde{\chi}_1^0$. Signal cross sections are calculated at approximately NNLO+NNLL order in $\alpha_S$, assuming unity branching fraction to $q_i\bar{q}_j W\pm\tilde{\chi}_1^0$.
Exclusion limits at 95% CL for direct gluino pair production, where the gluinos decay to bottom quarks ($\tilde{g}\to b\bar{b}\tilde{\chi}_1^0$). Signal cross sections are calculated at approximately NNLO+NNLL order in $\alpha_S$, assuming unity branching fraction for the given decay.
Exclusion limits at 95% CL for direct gluino pair production, where the gluinos decay to top quarks ($\tilde{g}\to t\bar{t}\tilde{\chi}_1^0$). Signal cross sections are calculated at approximately NNLO+NNLL order in $\alpha_S$, assuming unity branching fraction for the given decay.
Exclusion limits at 95% CL for light-flavor squark pair production, where the squarks decay to $q\tilde{\chi}_1^0$. Signal cross sections are calculated at approximately NNLO+NNLL order in $\alpha_S$, assuming unity branching fraction for the given decay and 1-fold degeneracy in the light-flavor squarks (corresponding to the inner set of curves in the limit plot). To get the theory cross section for other N-fold degeneracy assumptions (e.g. 8-fold for the outer curves in the limit plot), just multiply by N.
Exclusion limits at 95% CL for bottom squark pair production, where the squarks decay to $b\tilde{\chi}_1^0$. Signal cross sections are calculated at approximately NNLO+NNLL order in $\alpha_S$, assuming unity branching fraction for the given decay.
Exclusion limits at 95% CL for top squark pair production, where the squarks decay to $t\tilde{\chi}_1^0$. Signal cross sections are calculated at approximately NNLO+NNLL order in $\alpha_S$, assuming unity branching fraction for the given decay.
Exclusion limits at 95% CL for top squark pair production, where the squarks decay to $b\tilde{\chi}_1^\pm$ and the $\tilde{\chi}_1^0$ decay to $W^\pm\tilde{\chi}_1^0$. Signal cross sections are calculated at approximately NNLO+NNLL order in $\alpha_S$, assuming unity branching fraction for the given decay.
Exclusion limits at 95% CL for top squark pair production, where the squarks decay either to $b\tilde{\chi}_1^\pm\to bW^\pm\tilde{\chi}_1^0$ or to $t\tilde{\chi}_1^0$. Signal cross sections are calculated at approximately NNLO+NNLL order in $\alpha_S$, assuming unity branching fraction for the given decay.
Exclusion limits at 95% CL for top squark pair production, where the squarks decay to $c\tilde{\chi}_1^0$. Signal cross sections are calculated at approximately NNLO+NNLL order in $\alpha_S$, assuming unity branching fraction for the given decay.
Exclusion limits at 95% CL for the mono-$\phi$ model, in which a resonantly-produced colored scalar decays to a massive Dirac fermion and a quark. Signal cross sections are calculated at leading order in $\alpha_S$, assuming unity branching fraction for the given decay.
Cross section limits for $\mathrm{LQ}\to\mathrm{q}\nu$, where $q=u,\,d,\,s,\,\mathrm{or}\,c$. Limits are at the 95% confidence level. Theory cross sections are LO for vector LQ, and NLO for scalar LQ. Branching ratio is assumed to be 100% to $\mathrm{q}\nu$.
Cross section limits for $\mathrm{LQ}\to\mathrm{b}\nu$. Limits are at the 95% confidence level. Theory cross sections are LO for vector LQ, and NLO for scalar LQ. Branching ratio is assumed to be 100% to $\mathrm{b}\nu$.
Cross section limits for $\mathrm{LQ}\to\mathrm{t}\nu$. Limits are at the 95% confidence level. Theory cross sections are LO for vector LQ, and NLO for scalar LQ. Branching ratios are assumed to be $\mathcal{B}(\mathrm{LQ}\to\mathrm{t}\nu)=1-\beta$, and $\mathcal{B}(\mathrm{LQ}\to\mathrm{b}\tau)=\beta$.
Predictions and observations for monojet signal regions
Predictions and observations for signal regions with $250 \leq H_\mathrm{T} < 450$ GeV
Predictions and observations for signal regions with $450 \leq H_\mathrm{T} < 575$ GeV and $N_\mathrm{j}<7$
Predictions and observations for signal regions with $450 \leq H_\mathrm{T} < 575$ GeV and $N_\mathrm{j}\geq7$
Predictions and observations for signal regions with $575 \leq H_\mathrm{T} < 1200$ GeV and $N_\mathrm{j}^\mathrm{hi}<4$
Predictions and observations for signal regions with $575 \leq H_\mathrm{T} < 1200$ GeV and $4\leq N_\mathrm{j}^\mathrm{hi}<7$
Predictions and observations for signal regions with $575 \leq H_\mathrm{T} < 1200$ GeV and $N_\mathrm{j}\geq7$
Predictions and observations for signal regions with $1200 \leq H_\mathrm{T} < 1500$ GeV and $N_\mathrm{j}^\mathrm{hi}<4$
Predictions and observations for signal regions with $1200 \leq H_\mathrm{T} < 1500$ GeV and $4\leq N_\mathrm{j}^\mathrm{hi}<7$
Predictions and observations for signal regions with $1200 \leq H_\mathrm{T} < 1500$ GeV and $N_\mathrm{j}\geq7$
Predictions and observations for signal regions with $H_\mathrm{T} \geq 1500$ GeV and $N_\mathrm{j}<7$
Predictions and observations for signal regions with $H_\mathrm{T} \geq 1500$ GeV and $N_\mathrm{j}\geq7$
Covariance matrix for the 282 signal regions of the inclusive $M_\mathrm{T2}$ search
Correlation matrix for the 282 signal regions of the inclusive $M_\mathrm{T2}$ search
Bin number definitions for the $M_\mathrm{T2}$ covariance and correlation matrices
Exclusion limits at 95% CL for direct gluino pair production, where the gluinos decay to light-flavor quarks and either the lightest neutralino, or the lightest chargino, and the chargino is long-lived with $c\tau_0 = 10$ cm and mass O(100) MeV greater than the neutralino's mass. Signal cross sections are calculated at approximately NNLO+NNLL order in $\alpha_S$.
Exclusion limits at 95% CL for direct gluino pair production, where the gluinos decay to light-flavor quarks and either the lightest neutralino, or the lightest chargino, and the chargino is long-lived with $c\tau_0 = 50$ cm and mass O(100) MeV greater than the neutralino's mass. Signal cross sections are calculated at approximately NNLO+NNLL order in $\alpha_S$.
Exclusion limits at 95% CL for direct gluino pair production, where the gluinos decay to light-flavor quarks and either the lightest neutralino, or the lightest chargino, and the chargino is long-lived with $c\tau_0 = 200$ cm and mass O(100) MeV greater than the neutralino's mass. Signal cross sections are calculated at approximately NNLO+NNLL order in $\alpha_S$.
Exclusion limits at 95% CL for direct light squark pair production, where the squarks decay to light-flavor quarks and either the lightest neutralino, or the lightest chargino, and the chargino is long-lived with $c\tau_0 = 10$ cm and mass O(100) MeV greater than the neutralino's mass. Signal cross sections are calculated at approximately NNLO+NNLL order in $\alpha_S$, for a single light squark.
Exclusion limits at 95% CL for direct light squark pair production, where the squarks decay to light-flavor quarks and either the lightest neutralino, or the lightest chargino, and the chargino is long-lived with $c\tau_0 = 50$ cm and mass O(100) MeV greater than the neutralino's mass. Signal cross sections are calculated at approximately NNLO+NNLL order in $\alpha_S$, for a single light squark.
Exclusion limits at 95% CL for direct light squark pair production, where the squarks decay to light-flavor quarks and either the lightest neutralino, or the lightest chargino, and the chargino is long-lived with $c\tau_0 = 200$ cm and mass O(100) MeV greater than the neutralino's mass. Signal cross sections are calculated at approximately NNLO+NNLL order in $\alpha_S$, for a single light squark.
Exclusion limits at 95% CL for direct stop pair production, where the stops decay to either a top and the lightest neutralino, or a bottom and the lightest chargino, and the chargino is long-lived with $c\tau_0 = 10$ cm and mass O(100) MeV greater than the neutralino's mass. Signal cross sections are calculated at approximately NNLO+NNLL order in $\alpha_S$.
Exclusion limits at 95% CL for direct stop pair production, where the stops decay to either a top and the lightest neutralino, or a bottom and the lightest chargino, and the chargino is long-lived with $c\tau_0 = 50$ cm and mass O(100) MeV greater than the neutralino's mass. Signal cross sections are calculated at approximately NNLO+NNLL order in $\alpha_S$.
Exclusion limits at 95% CL for direct stop pair production, where the stops decay to either a top and the lightest neutralino, or a bottom and the lightest chargino, and the chargino is long-lived with $c\tau_0 = 200$ cm and mass O(100) MeV greater than the neutralino's mass. Signal cross sections are calculated at approximately NNLO+NNLL order in $\alpha_S$.
The maximum chargino mass excluded at 95% CL for direct gluino pair production, where the gluinos decay to light-flavor quarks and either the lightest neutralino, or the lightest chargino, and the chargino mass is O(100) MeV greater than the neutralino's mass. The chargino's lifetime is varied from $c\tau_{0} = 1$ to 2000 cm while the gluino mass is fixed to 1900 GeV. Signal cross sections are calculated at approximately NNLO+NNLL order in $\alpha_S$. If all kinematically allowed chargino masses are excluded, the curves, including 68 and 95% expected, tend to overlap. At short decay lengths, horizontal exclusion lines are obtained from the inclusive analysis, as this is not affected by track reconstruction inefficiencies, which may arise when the chargino decays before the CMS tracker, and therefore shows better sensitivity to scenarios with very small lifetime compared to the disappearing track search, based on median expected limits.
The maximum chargino mass excluded at 95% CL for direct squark pair production, where the squarks decay to light-flavor quarks and either the lightest neutralino, or the lightest chargino, and the chargino mass is O(100) MeV greater than the neutralino's mass. The chargino's lifetime is varied from $c\tau_{0} = 1$ to 2000 cm while the squark mass is fixed to 900 GeV. Signal cross sections are calculated at approximately NNLO+NNLL order in $\alpha_S$, for a single light squark. If all kinematically allowed chargino masses are excluded, the curves, including 68 and 95% expected, tend to overlap. At short decay lengths, horizontal exclusion lines are obtained from the inclusive analysis, as this is not affected by track reconstruction inefficiencies, which may arise when the chargino decays before the CMS tracker, and therefore shows better sensitivity to scenarios with very small lifetime compared to the disappearing track search, based on median expected limits.
The maximum chargino mass excluded at 95% CL for direct squark pair production, where the squarks decay to light-flavor quarks and either the lightest neutralino, or the lightest chargino, and the chargino mass is O(100) MeV greater than the neutralino's mass. The chargino's lifetime is varied from $c\tau_{0} = 1$ to 2000 cm while the squark mass is fixed to 1500 GeV. Signal cross sections are calculated at approximately NNLO+NNLL order in $\alpha_S$, and the eight light squarks' masses are assumed to be degenerate. If all kinematically allowed chargino masses are excluded, the curves, including 68 and 95% expected, tend to overlap. At short decay lengths, horizontal exclusion lines are obtained from the inclusive analysis, as this is not affected by track reconstruction inefficiencies, which may arise when the chargino decays before the CMS tracker, and therefore shows better sensitivity to scenarios with very small lifetime compared to the disappearing track search, based on median expected limits.
Exclusion limits at 95% CL for direct stop pair production, where the stops decay to either a top and the lightest neutralino, or a bottom and the lightest chargino, and the chargino mass is O(100) MeV greater than the neutralino's mass. The chargino's lifetime is varied from $c\tau_{0} = 1$ to 2000 cm while the stop mass is fixed to 1000 GeV. Signal cross sections are calculated at approximately NNLO+NNLL order in $\alpha_S$. If all kinematically allowed chargino masses are excluded, the curves, including 68 and 95% expected, tend to overlap. At short decay lengths, horizontal exclusion lines are obtained from the inclusive analysis, as this is not affected by track reconstruction inefficiencies, which may arise when the chargino decays before the CMS tracker, and therefore shows better sensitivity to scenarios with very small lifetime compared to the disappearing track search, based on median expected limits.
Exclusion limits at 95% CL for direct gluino pair production, where the gluinos decay to light-flavor quarks and either the lightest neutralino, or the lightest chargino, and the chargino mass is O(100) MeV greater than the neutralino's mass. The chargino's lifetime is varied from $c\tau_{0} = 5$ to 1000 cm while the gluino mass is fixed to 1600 GeV and the neutralino's mass is fixed to 1575 GeV. Signal cross sections are calculated at approximately NNLO+NNLL order in $\alpha_S$.
Exclusion limits at 95% CL for direct squark pair production, where the squarks decay to light-flavor quarks and either the lightest neutralino, or the lightest chargino, and the chargino mass is O(100) MeV greater than the neutralino's mass. The chargino's lifetime is varied from $c\tau_{0} = 5$ to 1000 cm while the squark mass is fixed to 2000 GeV and the neutralino's mass is fixed to 1000 GeV. Signal cross sections are calculated at approximately NNLO+NNLL order in $\alpha_S$, and the eight light squarks' masses are assumed to be degenerate.
Exclusion limits at 95% CL for direct stop pair production, where the stops decay to either a top and the lightest neutralino, or a bottom and the lightest chargino, and the chargino mass is O(100) MeV greater than the neutralino's mass. The chargino's lifetime is varied from $c\tau_{0} = 5$ to 1000 cm while the stop mass is fixed to 1100 GeV and the neutralino's mass is fixed to 1000 GeV. Signal cross sections are calculated at approximately NNLO+NNLL order in $\alpha_S$.
Predictions and observations for 2016 disappearing track signal regions
Predictions and observations for 2017-2018 pixel track signal regions
Predictions and observations for 2017-2018 medium (M) and long (L) length track signal regions
Covariance matrix for the 68 signal regions of the disappearing tracks $M_\mathrm{T2}$ search
Correlation matrix for the 68 signal regions of the disappearing tracks $M_\mathrm{T2}$ search
A search for supersymmetry in events with large missing transverse momentum, jets, and at least one hadronically decaying $\tau$-lepton is presented. Two exclusive final states with either exactly one or at least two $\tau$-leptons are considered. The analysis is based on proton-proton collisions at $\sqrt{s}$ = 13 TeV corresponding to an integrated luminosity of 36.1 fb$^{-1}$ delivered by the Large Hadron Collider and recorded by the ATLAS detector in 2015 and 2016. No significant excess is observed over the Standard Model expectation. At 95% confidence level, model-independent upper limits on the cross section are set and exclusion limits are provided for two signal scenarios: a simplified model of gluino pair production with $\tau$-rich cascade decays, and a model with gauge-mediated supersymmetry breaking (GMSB). In the simplified model, gluino masses up to 2000 GeV are excluded for low values of the mass of the lightest supersymmetric particle (LSP), while LSP masses up to 1000 GeV are excluded for gluino masses around 1400 GeV. In the GMSB model, values of the supersymmetry-breaking scale are excluded below 110 TeV for all values of $\tan\beta$ in the range $2 \leq \tan\beta \leq 60$, and below 120 TeV for $\tan\beta>30$.
1$\tau$ Compressed SR eff.
1$\tau$ Compressed SR eff.
1$\tau$ MediumMass SR eff.
1$\tau$ MediumMass SR eff.
2$\tau$ Compressed SR eff.
2$\tau$ Compressed SR eff.
2$\tau$ HighMass SR eff.
2$\tau$ HighMass SR eff.
2$\tau$ multibin SR eff.
2$\tau$ multibin SR eff.
2$\tau$ GMSB SR eff.
2$\tau$ GMSB SR eff.
1$\tau$ Compressed SR eff.
1$\tau$ Compressed SR eff.
1$\tau$ MediumMass SR eff.
1$\tau$ MediumMass SR eff.
2$\tau$ Compressed SR eff.
2$\tau$ Compressed SR eff.
2$\tau$ HighMass SR eff.
2$\tau$ HighMass SR eff.
2$\tau$ multibin SR eff.
2$\tau$ multibin SR eff.
2$\tau$ GMSB SR eff.
2$\tau$ GMSB SR eff.
1$\tau$ Compressed SR acceptance.
1$\tau$ Compressed SR acceptance.
1$\tau$ MediumMass SR acceptance.
1$\tau$ MediumMass SR acceptance.
2$\tau$ Compressed SR acceptance.
2$\tau$ Compressed SR acceptance.
2$\tau$ HighMass SR acceptance.
2$\tau$ HighMass SR acceptance.
2$\tau$ multibin SR acceptance.
2$\tau$ multibin SR acceptance.
2$\tau$ GMSB SR acceptance.
2$\tau$ GMSB SR acceptance.
1$\tau$ Compressed SR acceptance.
1$\tau$ Compressed SR acceptance.
1$\tau$ MediumMass SR acceptance.
1$\tau$ MediumMass SR acceptance.
2$\tau$ Compressed SR acceptance.
2$\tau$ Compressed SR acceptance.
2$\tau$ HighMass SR acceptance.
2$\tau$ HighMass SR acceptance.
2$\tau$ multibin SR acceptance.
2$\tau$ multibin SR acceptance.
2$\tau$ GMSB SR acceptance.
2$\tau$ GMSB SR acceptance.
Cutflow table of the $1\tau$ compressed SR for the four signal benchmark scenarios of low, medium, and high mass-splitting in the simplified model as well as the GMSB model.
Cutflow table of the $1\tau$ compressed SR for the four signal benchmark scenarios of low, medium, and high mass-splitting in the simplified model as well as the GMSB model.
Cutflow table of the $1\tau$ medium-mass SR for the four signal benchmark scenarios of low, medium, and high mass-splitting in the simplified model as well as the GMSB model.
Cutflow table of the $1\tau$ medium-mass SR for the four signal benchmark scenarios of low, medium, and high mass-splitting in the simplified model as well as the GMSB model.
Cutflow table of the $2\tau$ compressed SR for the four signal benchmark scenarios of low, medium, and high mass-splitting in the simplified model as well as the GMSB model.
Cutflow table of the $2\tau$ compressed SR for the four signal benchmark scenarios of low, medium, and high mass-splitting in the simplified model as well as the GMSB model.
Cutflow table of the $2\tau$ high-mass SR for the four signal benchmark scenarios of low, medium, and high mass-splitting in the simplified model as well as the GMSB model.
Cutflow table of the $2\tau$ high-mass SR for the four signal benchmark scenarios of low, medium, and high mass-splitting in the simplified model as well as the GMSB model.
Cutflow table of the $2\tau$ multibin SR for the four signal benchmark scenarios of low, medium, and high mass-splitting in the simplified model as well as the GMSB model.
Cutflow table of the $2\tau$ multibin SR for the four signal benchmark scenarios of low, medium, and high mass-splitting in the simplified model as well as the GMSB model.
Cutflow table of the $2\tau$ GMSB SR for the four signal benchmark scenarios of low, medium, and high mass-splitting in the simplified model as well as the GMSB model.
Cutflow table of the $2\tau$ GMSB SR for the four signal benchmark scenarios of low, medium, and high mass-splitting in the simplified model as well as the GMSB model.
Best performing fit setups entering the final combination as a function of the LSP mass and the gluino mass. 'S' marks the simultaneous fit of the four simplified model single-bin SRs, 'M' denotes the simultaneous fit of the two $1\tau$ SRs and the $2\tau$ multibin SR.
Best performing fit setups entering the final combination as a function of the LSP mass and the gluino mass. 'S' marks the simultaneous fit of the four simplified model single-bin SRs, 'M' denotes the simultaneous fit of the two $1\tau$ SRs and the $2\tau$ multibin SR.
Observed exclusion contour at 95% CL as a function of tanBeta and the SUSY-breaking mass scale Lambda.
Observed exclusion contour at 95% CL as a function of tanBeta and the SUSY-breaking mass scale Lambda.
Expected exclusion contour at 95% CL as a function of tanBeta and the SUSY-breaking mass scale Lambda.
Expected exclusion contour at 95% CL as a function of tanBeta and the SUSY-breaking mass scale Lambda.
Observed exclusion contour at 95% CL as a function of the LSP mass and the gluino mass.
Observed exclusion contour at 95% CL as a function of the LSP mass and the gluino mass.
Expected exclusion contour at 95% CL as a function of the LSP mass and the gluino mass.
Expected exclusion contour at 95% CL as a function of the LSP mass and the gluino mass.
Observed upper limits on the production cross section at 95% CL in pb as a function of tanBeta and SUSY breaking mass scale Lambda.
Observed upper limits on the production cross section at 95% CL in pb as a function of tanBeta and SUSY breaking mass scale Lambda.
Observed upper limits on the production cross section at 95% CL in pb as a function of the LSP mass and the gluino mass.
Observed upper limits on the production cross section at 95% CL in pb as a function of the LSP mass and the gluino mass.
Yields of the expected background from the SM in the bins of the multibin SR of the $2\tau$ channel with all bins being simultaneously used to constrain the background prediction. Expectation is given with the scalings computed in the combined fit applied. Uncertainties are statistial plus systematrics. Only the subsamples contributing the respective region are considered.
Yields of the expected background from the SM in the bins of the multibin SR of the $2\tau$ channel with all bins being simultaneously used to constrain the background prediction. Expectation is given with the scalings computed in the combined fit applied. Uncertainties are statistial plus systematrics. Only the subsamples contributing the respective region are considered.
$m_{\mathrm{T}}^{\tau}$ in the compressed $m_{\mathrm{T}}^{\tau}$ VR of the $1\tau$ channel, illustrating the background modeling after the fit. The last bin includes overflow events.
$m_{\mathrm{T}}^{\tau}$ in the compressed $m_{\mathrm{T}}^{\tau}$ VR of the $1\tau$ channel, illustrating the background modeling after the fit. The last bin includes overflow events.
$E_{\mathrm{T}}^{\mathrm{miss}}$ in the compressed $E_{\mathrm{T}}^{\mathrm{miss}}$ VR of the $1\tau$ channel, illustrating the background modeling after the fit. The last bin includes overflow events.
$E_{\mathrm{T}}^{\mathrm{miss}}$ in the compressed $E_{\mathrm{T}}^{\mathrm{miss}}$ VR of the $1\tau$ channel, illustrating the background modeling after the fit. The last bin includes overflow events.
$m_{\mathrm{T}}^{\tau}$ in the medium-mass $m_{\mathrm{T}}^{\tau}$ VR of the $1\tau$ channel, illustrating the background modeling after the fit. The last bin includes overflow events.
$m_{\mathrm{T}}^{\tau}$ in the medium-mass $m_{\mathrm{T}}^{\tau}$ VR of the $1\tau$ channel, illustrating the background modeling after the fit. The last bin includes overflow events.
$E_{\mathrm{T}}^{\mathrm{miss}}$ in the medium-mass $E_{\mathrm{T}}^{\mathrm{miss}}$ VR of the $1\tau$ channel, illustrating the background modeling after the fit. The last bin includes overflow events.
$E_{\mathrm{T}}^{\mathrm{miss}}$ in the medium-mass $E_{\mathrm{T}}^{\mathrm{miss}}$ VR of the $1\tau$ channel, illustrating the background modeling after the fit. The last bin includes overflow events.
$H_{\mathrm{T}}$ in the medium-mass $H_{\mathrm{T}}$ VR of the $1\tau$ channel, illustrating the background modeling after the fit. The last bin includes overflow events.
$H_{\mathrm{T}}$ in the medium-mass $H_{\mathrm{T}}$ VR of the $1\tau$ channel, illustrating the background modeling after the fit. The last bin includes overflow events.
$m_{\mathrm{T}}^{\tau_1}$ + $m_{\mathrm{T}}^{\tau_2}$ in the top VR of the $2\tau$ channel, illustrating the background modeling after the fit. The last bin includes overflow events.
$m_{\mathrm{T}}^{\tau_1}$ + $m_{\mathrm{T}}^{\tau_2}$ in the top VR of the $2\tau$ channel, illustrating the background modeling after the fit. The last bin includes overflow events.
$H_{\mathrm{T}}$ in the $W$ VR of the $2\tau$ channel, illustrating the background modeling after the fit. The last bin includes overflow events.
$H_{\mathrm{T}}$ in the $W$ VR of the $2\tau$ channel, illustrating the background modeling after the fit. The last bin includes overflow events.
$m_{\mathrm{T}}^{\tau_1}$ + $m_{\mathrm{T}}^{\tau_2}$ in the $Z$ VR of the $2\tau$ channel, illustrating the background modeling after the fit. The last bin includes overflow events.
$m_{\mathrm{T}}^{\tau_1}$ + $m_{\mathrm{T}}^{\tau_2}$ in the $Z$ VR of the $2\tau$ channel, illustrating the background modeling after the fit. The last bin includes overflow events.
$m_{\mathrm{T}}^{\tau}$ in the compressed SR of the $1\tau$ channel before application of the $m_{\mathrm{T}}^{\tau}$ > 80 GeV requirement. The last bin includes overflow events. Signal predictions corresponding to the simplified model scenarios of low (LM), medium (MM), and high mass-splitting (HM) as well as for the GMSB benchmark are given.
$m_{\mathrm{T}}^{\tau}$ in the compressed SR of the $1\tau$ channel before application of the $m_{\mathrm{T}}^{\tau}$ > 80 GeV requirement. The last bin includes overflow events. Signal predictions corresponding to the simplified model scenarios of low (LM), medium (MM), and high mass-splitting (HM) as well as for the GMSB benchmark are given.
$H_{\mathrm{T}}$ in the medium-mass SR of the $1\tau$ channel before application of the $H_{\mathrm{T}}$ > 1000 GeV requirement. The last bin includes overflow events. Signal predictions corresponding to the simplified model scenarios of low (LM), medium (MM), and high mass-splitting (HM) as well as for the GMSB benchmark are given.
$H_{\mathrm{T}}$ in the medium-mass SR of the $1\tau$ channel before application of the $H_{\mathrm{T}}$ > 1000 GeV requirement. The last bin includes overflow events. Signal predictions corresponding to the simplified model scenarios of low (LM), medium (MM), and high mass-splitting (HM) as well as for the GMSB benchmark are given.
$m_{\mathrm{T}}^{\mathrm{sum}}$ in the compressed SR of the $2\tau$ channel before application of the $m_{\mathrm{T}}^{\mathrm{sum}}$ > 1600 GeV requirement. The last bin includes overflow events. Signal predictions corresponding to the simplified model scenarios of low (LM), medium (MM), and high mass-splitting (HM) as well as for the GMSB benchmark are given.
$m_{\mathrm{T}}^{\mathrm{sum}}$ in the compressed SR of the $2\tau$ channel before application of the $m_{\mathrm{T}}^{\mathrm{sum}}$ > 1600 GeV requirement. The last bin includes overflow events. Signal predictions corresponding to the simplified model scenarios of low (LM), medium (MM), and high mass-splitting (HM) as well as for the GMSB benchmark are given.
$H_{\mathrm{T}}$ in the high-mass SR of the $2\tau$ channel before application of the $H_{\mathrm{T}}$ > 1100 GeV requirement. The last bin includes overflow events. Signal predictions corresponding to the simplified model scenarios of low (LM), medium (MM), and high mass-splitting (HM) as well as for the GMSB benchmark are given.
$H_{\mathrm{T}}$ in the high-mass SR of the $2\tau$ channel before application of the $H_{\mathrm{T}}$ > 1100 GeV requirement. The last bin includes overflow events. Signal predictions corresponding to the simplified model scenarios of low (LM), medium (MM), and high mass-splitting (HM) as well as for the GMSB benchmark are given.
mT(tau_1) + mT(tau_2) in the multibin SR of the 2T channel. The last bin includes overflow events. Signal predictions corresponding to the simplified model scenarios of low (LM), medium (MM), and high mass-splitting (HM) as well as for the GMSB benchmark are given.
mT(tau_1) + mT(tau_2) in the multibin SR of the 2T channel. The last bin includes overflow events. Signal predictions corresponding to the simplified model scenarios of low (LM), medium (MM), and high mass-splitting (HM) as well as for the GMSB benchmark are given.
$H_{\mathrm{T}}$ in the GMSB SR of the $2\tau$ channel before application of the $H_{\mathrm{T}}$ > 1900 GeV requirement. The last bin includes overflow events. Signal predictions corresponding to the simplified model scenarios of low (LM), medium (MM), and high mass-splitting (HM) as well as for the GMSB benchmark are given.
$H_{\mathrm{T}}$ in the GMSB SR of the $2\tau$ channel before application of the $H_{\mathrm{T}}$ > 1900 GeV requirement. The last bin includes overflow events. Signal predictions corresponding to the simplified model scenarios of low (LM), medium (MM), and high mass-splitting (HM) as well as for the GMSB benchmark are given.
A search for the supersymmetric partners of quarks and gluons (squarks and gluinos) in final states containing hadronic jets and missing transverse momentum, but no electrons or muons, is presented. The data used in this search were recorded in 2015 and 2016 by the ATLAS experiment in $\sqrt{s}$=13 TeV proton--proton collisions at the Large Hadron Collider, corresponding to an integrated luminosity of 36.1 fb$^{-1}$. The results are interpreted in the context of various models where squarks and gluinos are pair-produced and the neutralino is the lightest supersymmetric particle. An exclusion limit at the 95\% confidence level on the mass of the gluino is set at 2.03 TeV for a simplified model incorporating only a gluino and the lightest neutralino, assuming the lightest neutralino is massless. For a simplified model involving the strong production of mass-degenerate first- and second-generation squarks, squark masses below 1.55 TeV are excluded if the lightest neutralino is massless. These limits substantially extend the region of supersymmetric parameter space previously excluded by searches with the ATLAS detector.
Observed and expected background and signal effective mass distributions for SR2j-2100. For signal, a squark direct decay model where squarks have mass of 600 GeV and the neutralino1 has mass of 595 GeV is shown.
Observed and expected background and signal effective mass distributions for SR2j-2800. For signal, a squark direct decay model where squarks have mass of 1500 GeV and the neutralino1 has mass of 0 GeV is shown.
Observed and expected background and signal effective mass distributions for SR4j-1000. For signal, a gluino direct decay model where gluinos have mass of 1300 GeV and the neutralino1 has mass of 900 GeV is shown.
Observed and expected background and signal effective mass distributions for SR4j-2200. For signal, a gluino direct decay model where gluinos have mass of 1800 GeV and the neutralino1 has mass of 800 GeV is shown.
Observed and expected background and signal effective mass distributions for SR6j-2600. For signal, a gluino onestep decay model where gluinos have mass of 1705 GeV, the chargino1 has mass of 865 GeV and the neutralino1 has mass of 25 GeV is shown.
Observed and expected background and signal effective mass distributions for SR2jB-2400. For signal, a gluino onestep decay model where gluinos have mass of 1600 GeV, the chargino1 has mass of 1590 GeV and the neutralino1 has mass of 60 GeV is shown.
Observed and expected background and signal effective mass distributions for SR2j-1200. For signal, a squark direct decay model where squarks have mass of 900 GeV and the neutralino1 has mass of 500 GeV is shown.
Observed and expected background and signal effective mass distributions for SR2j-1600. For signal, a squark direct decay model where squarks have mass of 1200 GeV and the neutralino1 has mass of 500 GeV is shown.
Observed and expected background and signal effective mass distributions for SR2j-2000. For signal, a squark direct decay model where squarks have mass of 1200 GeV and the neutralino1 has mass of 0 GeV is shown.
Observed and expected background and signal effective mass distributions for SR2j-2400. For signal, a squark direct decay model where squarks have mass of 1500 GeV and the neutralino1 has mass of 0 GeV is shown.
Observed and expected background and signal effective mass distributions for SR2j-3600. For signal, a squark direct decay model where squarks have mass of 1200 GeV and the neutralino1 has mass of 0 GeV is shown.
Observed and expected background and signal effective mass distributions for SR2jB-1600. For signal, a gluino onestep decay model where gluinos have mass of 1600 GeV, the chargino1 has mass of 1590 GeV and the neutralino1 has mass of 60 GeV is shown.
Observed and expected background and signal effective mass distributions for SR3j-1300. For signal, a squark direct decay model where squarks have mass of 600 GeV and the neutralino1 has mass of 595 GeV is shown.
Observed and expected background and signal effective mass distributions for SR4j-1400. For signal, a gluino direct decay model where gluinos have mass of 1800 GeV and the neutralino1 has mass of 0 GeV is shown.
Observed and expected background and signal effective mass distributions for SR4j-1800. For signal, a gluino direct decay model where gluinos have mass of 1800 GeV and the neutralino1 has mass of 0 GeV is shown.
Observed and expected background and signal effective mass distributions for SR4j-2600. For signal, a gluino direct decay model where gluinos have mass of 1800 GeV and the neutralino1 has mass of 0 GeV is shown.
Observed and expected background and signal effective mass distributions for SR4j-3000. For signal, a gluino direct decay model where gluinos have mass of 1800 GeV and the neutralino1 has mass of 0 GeV is shown.
Observed and expected background and signal effective mass distributions for SR5j-1600. For signal, a gluino onestep decay model where gluinos have mass of 1705 GeV, the chargino1 has mass of 865 GeV and the neutralino1 has mass of 25 GeV is shown.
Observed and expected background and signal effective mass distributions for SR5j-1700. For signal, a gluino direct decay model where gluinos have mass of 1800 GeV and the neutralino1 has mass of 0 GeV is shown.
Observed and expected background and signal effective mass distributions for SR5j-2000. For signal, a gluino onestep decay model where gluinos have mass of 1705 GeV, the chargino1 has mass of 865 GeV and the neutralino1 has mass of 25 GeV is shown.
Observed and expected background and signal effective mass distributions for SR5j-2600. For signal, a gluino onestep decay model where gluinos have mass of 1705 GeV, the chargino1 has mass of 865 GeV and the neutralino1 has mass of 25 GeV is shown.
Observed and expected background and signal effective mass distributions for SR6j-1200. For signal, a gluino onestep decay model where gluinos have mass of 1705 GeV, the chargino1 has mass of 865 GeV and the neutralino1 has mass of 25 GeV is shown.
Observed and expected background and signal effective mass distributions for SR6j-1800. For signal, a gluino onestep decay model where gluinos have mass of 1705 GeV, the chargino1 has mass of 865 GeV and the neutralino1 has mass of 25 GeV is shown.
Observed and expected background and signal effective mass distributions for SR6j-2200. For signal, a gluino onestep decay model where gluinos have mass of 1705 GeV, the chargino1 has mass of 865 GeV and the neutralino1 has mass of 25 GeV is shown.
Observed 95% CL upper limit on the signal cross-section from searches in a SUSY scenario where squarks are produced in pairs and decay directly into the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from searches on the light-flavor squark and lightest neutralino masses in a SUSY scenario where squarks are produced in pairs and decay directly into the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from searches on the light-flavor squark and lightest neutralino masses in a SUSY scenario where squarks are produced in pairs and decay directly into the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from Meff-based searches on the light-flavor squark and lightest neutralino masses in a SUSY scenario where squarks are produced in pairs and decay directly into the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from Meff-based searches on the light-flavor squark and lightest neutralino masses in a SUSY scenario where squarks are produced in pairs and decay directly into the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from RJR-based searches on the light-flavor squark and lightest neutralino masses in a SUSY scenario where squarks are produced in pairs and decay directly into the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from RJR-based searches on the light-flavor squark and lightest neutralino masses in a SUSY scenario where squarks are produced in pairs and decay directly into the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{0}$.
Observed 95% CL upper limit on the signal cross-section from searches in a SUSY scenario where gluinos are produced in pairs and decay directly into the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from searches on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay directly into the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from searches on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay directly into the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from Meff-based searches on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay directly into the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from Meff-based searches on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay directly into the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from RJR-based searches on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay directly into the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from RJR-based searches on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay directly into the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{0}$.
Observed 95% CL upper limit on the signal cross-section from searches in a SUSY scenario where squarks are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{\pm} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from searches on the squark and lightest neutralino masses in a SUSY scenario where squarks are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{\pm} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from searches on the squark and lightest neutralino masses in a SUSY scenario where squarks are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{\pm} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from Meff-based searches on the squark and lightest neutralino masses in a SUSY scenario where squarks are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{\pm} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from Meff-based searches on the squark and lightest neutralino masses in a SUSY scenario where squarks are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{\pm} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from RJR-based searches on the squark and lightest neutralino masses in a SUSY scenario where squarks are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{\pm} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from RJR-based searches on the squark and lightest neutralino masses in a SUSY scenario where squarks are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{\pm} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0}$.
Observed 95% CL upper limit on the signal cross-section from Meff-based searches in a SUSY scenario where squarks are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{\pm} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from Meff-based searches on the squark mass and the mass gap ratio x in a SUSY scenario where squarks are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{\pm} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from Meff-based searches on the squark mass and the mass gap ratio x in a SUSY scenario where squarks are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{\pm} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0}$.
Observed 95% CL upper limit on the signal cross-section from searches in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate lightest chargino to lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{\pm} \rightarrow qq W^{\pm} \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from searches on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate lightest chargino to lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{\pm} \rightarrow qq W^{\pm} \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from searches on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate lightest chargino to lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{\pm} \rightarrow qq W^{\pm} \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from Meff-based searches on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate lightest chargino to lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{\pm} \rightarrow qq W^{\pm} \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from Meff-based searches on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{\pm} \rightarrow qq W^{\pm} \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from RJR-based searches on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate lightest chargino to lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{\pm} \rightarrow qq W^{\pm} \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from RJR-based searches on the gluino and lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate lightest chargino to lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{\pm} \rightarrow qq W^{\pm} \tilde{\chi}_{1}^{0}$.
Observed 95% CL upper limit on the signal cross-section from Meff-based searches in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{\pm} \rightarrow qq W^{\pm} \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from Meff-based searches on the gluino mass and the mass gap ratio x in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{\pm} \rightarrow qq W^{\pm} \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from Meff-based searches on the gluino mass and the mass gap ratio x in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate lightest chargino to the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{\pm} \rightarrow qq W^{\pm} \tilde{\chi}_{1}^{0}$.
Observed 95% CL upper limit on the signal cross-section from Meff-based searches in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate the second lightest neutralino to the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{2}^{0} \rightarrow qq Z \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from Meff-based searches on the gluino and second lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate the second lightest neutralino to the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{2}^{0} \rightarrow qq Z \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from Meff-based searches on the gluino and second lightest neutralino masses in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate the second lightest neutralino to the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{2}^{0} \rightarrow qq Z \tilde{\chi}_{1}^{0}$.
Observed 95% CL upper limit on the signal cross-section from Meff-based searches in a SUSY scenario where squarks are produced in pairs and decay via an intermediate lightest chargino or second lightest neutralino to the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{\pm} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0}$, or $\tilde{q} \rightarrow q \tilde{\chi}_{2}^{0} \rightarrow qq Z/h \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from Meff-based searches on the squark mass and the mass gap ratio x in a SUSY scenario where squarks are produced in pairs and decay via an intermediate lightest chargino or second lightest neutralino to the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{\pm} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0}$, or $\tilde{q} \rightarrow q \tilde{\chi}_{2}^{0} \rightarrow qq Z/h \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from Meff-based searches on the squark mass and the mass gap ratio x in a SUSY scenario where squarks are produced in pairs and decay via an intermediate lightest chargino or second lightest neutralino to the lightest neutralino, $\tilde{q} \rightarrow q \tilde{\chi}_{1}^{\pm} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0}$, or $\tilde{q} \rightarrow q \tilde{\chi}_{2}^{0} \rightarrow qq Z/h \tilde{\chi}_{1}^{0}$.
Observed 95% CL upper limit on the signal cross-section from Meff-based searches in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate lightest chargino or second lightest neutralino to the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{\pm} \rightarrow qq W^{\pm} \tilde{\chi}_{1}^{0}$, or $\tilde{g} \rightarrow qq \tilde{\chi}_{2}^{0} \rightarrow qq Z/h \tilde{\chi}_{1}^{0}$.
Expected 95% CL exclusion contours from Meff-based searches on the gluino mass and the mass gap ratio x in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate lightest chargino or second lightest neutralino to the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{\pm} \rightarrow qq W^{\pm} \tilde{\chi}_{1}^{0}$, or $\tilde{g} \rightarrow qq \tilde{\chi}_{2}^{0} \rightarrow qq Z/h \tilde{\chi}_{1}^{0}$.
Observed 95% CL exclusion contours from Meff-based searches on the gluino mass and the mass gap ratio x in a SUSY scenario where gluinos are produced in pairs and decay via an intermediate lightest chargino or second lightest neutralino to the lightest neutralino, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{\pm} \rightarrow qq W^{\pm} \tilde{\chi}_{1}^{0}$, or $\tilde{g} \rightarrow qq \tilde{\chi}_{2}^{0} \rightarrow qq Z/h \tilde{\chi}_{1}^{0}$.
Observed 95% CL upper limit on the signal cross-section from Meff-based searches for inclusive squark-gluino production in pMSSM models with $m_{\tilde{\chi}_{1}^0}=0$ GeV.
Expected 95% CL exclusion contours from Meff-based searches on the gluino and squark masses for inclusive squark-gluino production in pMSSM models with $m_{\tilde{\chi}_{1}^0}=0$ GeV.
Observed 95% CL exclusion contours from Meff-based searches on the gluino and squark masses for inclusive squark-gluino production in pMSSM models with $m_{\tilde{\chi}_{1}^0}=0$ GeV.
Observed 95% CL upper limit on the signal cross-section from Meff-based searches for inclusive squark-gluino production in pMSSM models with $m_{\tilde{\chi}_{1}^0}=695$ GeV.
Expected 95% CL exclusion contours from Meff-based searches on the gluino and squark masses for inclusive squark-gluino production in pMSSM models with $m_{\tilde{\chi}_{1}^0}=695$ GeV.
Observed 95% CL exclusion contours from Meff-based searches on the gluino and squark masses for inclusive squark-gluino production in pMSSM models with $m_{\tilde{\chi}_{1}^0}=695$ GeV.
Observed 95% CL upper limit on the signal cross-section from Meff-based searches for inclusive squark-gluino production in pMSSM models with $m_{\tilde{\chi}_{1}^0}=995$ GeV.
Expected 95% CL exclusion contours from Meff-based searches on the gluino and squark masses for inclusive squark-gluino production in pMSSM models with $m_{\tilde{\chi}_{1}^0}=995$ GeV.
Observed 95% CL exclusion contours from Meff-based searches on the gluino and squark masses for inclusive squark-gluino production in pMSSM models with $m_{\tilde{\chi}_{1}^0}=995$ GeV.
Cut-flow of Meff-2j for three supersymmetric models: a gluino direct decay model where gluinos have mass of 2000 $\mathrm{\ Ge\kern -0.1em V}$ and the $\tilde{\chi}_{1}^{0}$ has mass of 0 $\mathrm{\ Ge\kern -0.1em V}$ (10000 generated events); and a squark direct decay model where squarks have mass of 1200 $\mathrm{\ Ge\kern -0.1em V}$ and the $\tilde{\chi}_{1}^{0}$ has mass of 600 $\mathrm{\ Ge\kern -0.1em V}$ (20000 generated events); and a squark direct decay model where squarks have mass of 1500 $\mathrm{\ Ge\kern -0.1em V}$ and the $\tilde{\chi}_{1}^{0}$ has mass of 0 $\mathrm{\ Ge\kern -0.1em V}$ (10000 generated events). The numbers are normalized to a luminosity of 36.1 fb$^{-1}$.
Cut-flow of Meff-3j,4j for three supersymmetric models: a gluino direct decay model where gluinos have mass of 2000 $\mathrm{\ Ge\kern -0.1em V}$ and the $\tilde{\chi}_{1}^{0}$ has mass of 0 $\mathrm{\ Ge\kern -0.1em V}$ (10000 generated events); and a squark direct decay model where squarks have mass of 1200 $\mathrm{\ Ge\kern -0.1em V}$ and the $\tilde{\chi}_{1}^{0}$ has mass of 600 $\mathrm{\ Ge\kern -0.1em V}$ (20000 generated events); and a squark direct decay model where squarks have mass of 1500 $\mathrm{\ Ge\kern -0.1em V}$ and the $\tilde{\chi}_{1}^{0}$ has mass of 0 $\mathrm{\ Ge\kern -0.1em V}$ (10000 generated events). The numbers are normalized to a luminosity of 36.1 fb$^{-1}$.
Cut-flow of Meff-5j,6j for three supersymmetric models: a gluino direct decay model where gluinos have mass of 2000 $\mathrm{\ Ge\kern -0.1em V}$ and the $\tilde{\chi}_{1}^{0}$ has mass of 0 $\mathrm{\ Ge\kern -0.1em V}$ (10000 generated events); and a squark direct decay model where squarks have mass of 1200 $\mathrm{\ Ge\kern -0.1em V}$ and the $\tilde{\chi}_{1}^{0}$ has mass of 600 $\mathrm{\ Ge\kern -0.1em V}$ (20000 generated events); and a squark direct decay model where squarks have mass of 1500 $\mathrm{\ Ge\kern -0.1em V}$ and the $\tilde{\chi}_{1}^{0}$ has mass of 0 $\mathrm{\ Ge\kern -0.1em V}$ (10000 generated events). The numbers are normalized to a luminosity of 36.1 fb$^{-1}$.
Cut-flow for RJR-based SR's targeting squarks for SS direct model points. Expected yields are normalized to a luminosity of 36.1 fb$^{-1}$.
Cut-flow for RJR-based SR's targeting gluinos for GG direct model points. Expected yields are normalized to a luminosity of 36.1 fb$^{-1}$.
Cut-flow for RJR-based SR's targeting compressed mass-spectra signals for SS direct and GG direct model points. Expected yields are normalized to a luminosity of 36.1 fb$^{-1}$.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-1200.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-1600.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-2000.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-2400.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-2800.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-3600.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-2100.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-3j-1300.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-1000.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-1400.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-1800.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-2200.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-2600.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-3000.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-5j-1700.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-5j-1600.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-5j-2000.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-5j-2600.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-6j-1200.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-6j-1800.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-6j-2200.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-6j-2600.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2jB-1600.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2jB-2400.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S1a.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S1b.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S2a.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S2b.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S3a.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S3b.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S4.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-C1.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-C2.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-C3.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-C4.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-C5.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G1a.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G1b.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G2a.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G2b.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G3a.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G3b.
Signal region acceptance for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G4.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-1200.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-1600.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-2000.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-2400.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-2800.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-3600.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-2100.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-3j-1300.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-4j-1000.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-4j-1400.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-4j-1800.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-4j-2200.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-4j-2600.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-4j-3000.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-5j-1700.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-5j-1600.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-5j-2000.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-5j-2600.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-6j-1200.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-6j-1800.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-6j-2200.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-6j-2600.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2jB-1600.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2jB-2400.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S1a.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S1b.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S2a.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S2b.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S3a.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S3b.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S4.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-C1.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-C2.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-C3.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-C4.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-C5.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G1a.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G1b.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G2a.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G2b.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G3a.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G3b.
Signal region acceptance for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G4.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2j-1200.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2j-1600.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2j-2000.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2j-2400.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2j-2800.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2j-3600.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2j-2100.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-3j-1300.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-4j-1000.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-4j-1400.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-4j-1800.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-4j-2200.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-4j-2600.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-4j-3000.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-5j-1700.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-5j-1600.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-5j-2000.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-5j-2600.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-6j-1200.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-6j-1800.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-6j-2200.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-6j-2600.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2jB-1600.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2jB-2400.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-S1a.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-S1b.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-S2a.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-S2b.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-S3a.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-S3b.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-S4.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-C1.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-C2.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-C3.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-C4.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-C5.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-G1a.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-G1b.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-G2a.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-G2b.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-G3a.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-G3b.
Signal region acceptance for simplified model with squark pair production and decays to a quark and chargino in SR RJR-G4.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2j-1200.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2j-1600.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2j-2000.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2j-2400.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2j-2800.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2j-3600.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2j-2100.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-3j-1300.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-4j-1000.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-4j-1400.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-4j-1800.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-4j-2200.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-4j-2600.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-4j-3000.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-5j-1700.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-5j-1600.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-5j-2000.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-5j-2600.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-6j-1200.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-6j-1800.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-6j-2200.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-6j-2600.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2jB-1600.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2jB-2400.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-S1a.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-S1b.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-S2a.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-S2b.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-S3a.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-S3b.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-S4.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-C1.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-C2.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-C3.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-C4.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-C5.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-G1a.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-G1b.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-G2a.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-G2b.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-G3a.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-G3b.
Signal region acceptance for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-G4.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-1200.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-1600.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-2000.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-2400.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-2800.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-3600.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2j-2100.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-3j-1300.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-1000.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-1400.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-1800.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-2200.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-2600.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-4j-3000.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-5j-1700.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-5j-1600.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-5j-2000.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-5j-2600.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-6j-1200.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-6j-1800.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-6j-2200.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-6j-2600.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2jB-1600.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR Meff-2jB-2400.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S1a.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S1b.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S2a.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S2b.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S3a.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S3b.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-S4.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-C1.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-C2.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-C3.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-C4.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-C5.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G1a.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G1b.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G2a.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G2b.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G3a.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G3b.
Signal region efficiency for simplified model with squark pair production and direct decays to a quark and neutralino in SR RJR-G4.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-1200.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-1600.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-2000.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-2400.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-2800.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-3600.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2j-2100.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-3j-1300.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-4j-1000.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-4j-1400.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-4j-1800.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-4j-2200.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-4j-2600.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-4j-3000.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-5j-1700.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-5j-1600.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-5j-2000.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-5j-2600.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-6j-1200.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-6j-1800.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-6j-2200.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-6j-2600.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2jB-1600.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR Meff-2jB-2400.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S1a.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S1b.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S2a.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S2b.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S3a.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S3b.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-S4.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-C1.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-C2.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-C3.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-C4.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-C5.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G1a.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G1b.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G2a.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G2b.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G3a.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G3b.
Signal region efficiency for simplified model with gluino pair production and direct decays to two quarks and neutralino in SR RJR-G4.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2j-1200.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2j-1600.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2j-2000.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2j-2400.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2j-2800.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2j-3600.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2j-2100.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-3j-1300.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-4j-1000.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-4j-1400.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-4j-1800.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-4j-2200.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-4j-2600.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-4j-3000.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-5j-1700.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-5j-1600.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-5j-2000.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-5j-2600.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-6j-1200.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-6j-1800.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-6j-2200.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-6j-2600.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2jB-1600.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR Meff-2jB-2400.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-S1a.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-S1b.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-S2a.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-S2b.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-S3a.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-S3b.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-S4.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-C1.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-C2.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-C3.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-C4.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-C5.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-G1a.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-G1b.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-G2a.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-G2b.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-G3a.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-G3b.
Signal region efficiency for simplified model with squark pair production and decays to a quark and chargino in SR RJR-G4.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2j-1200.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2j-1600.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2j-2000.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2j-2400.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2j-2800.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2j-3600.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2j-2100.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-3j-1300.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-4j-1000.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-4j-1400.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-4j-1800.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-4j-2200.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-4j-2600.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-4j-3000.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-5j-1700.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-5j-1600.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-5j-2000.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-5j-2600.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-6j-1200.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-6j-1800.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-6j-2200.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-6j-2600.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2jB-1600.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR Meff-2jB-2400.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-S1a.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-S1b.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-S2a.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-S2b.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-S3a.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-S3b.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-S4.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-C1.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-C2.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-C3.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-C4.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-C5.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-G1a.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-G1b.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-G2a.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-G2b.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-G3a.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-G3b.
Signal region efficiency for simplified model with gluino pair production and decays to two quarks and chargino in SR RJR-G4.
The results of a search for the stop, the supersymmetric partner of the top quark, in final states with one isolated electron or muon, jets, and missing transverse momentum are reported. The search uses the 2015 LHC $pp$ collision data at a center-of-mass energy of $\sqrt{s}=13$ TeV recorded by the ATLAS detector and corresponding to an integrated luminosity of 3.2 fb${}^{-1}$. The analysis targets two types of signal models: gluino-mediated pair production of stops with a nearly mass-degenerate stop and neutralino; and direct pair production of stops, decaying to the top quark and the lightest neutralino. The experimental signature in both signal scenarios is similar to that of a top quark pair produced in association with large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits on gluino and stop masses are set at 95% confidence level. The results extend the LHC Run-1 exclusion limit on the gluino mass up to 1460 GeV in the gluino-mediated scenario in the high gluino and low stop mass region, and add an excluded stop mass region from 745 to 780 GeV for the direct stop model with a massless lightest neutralino. The results are also reinterpreted to set exclusion limits in a model of vector-like top quarks.
Comparison of data with estimated backgrounds in the $am_\text{T2}$ distribution with the STCR1 event selection except for the requirement on $am_\text{T2}$. The predicted backgrounds are scaled with normalization factors. The uncertainty band includes statistical and all experimental systematic uncertainties. The last bin includes overflow.
Comparison of data with estimated backgrounds in the $b$-tagged jet multiplicity with the STCR1 event selection except for the requirement on the $b$-tagged jet multiplicity. Furthermore, the $\Delta R(b_1,b_2)$ requirement is dropped. The predicted backgrounds are scaled with normalization factors. The uncertainty band includes statistical and all experimental systematic uncertainties. The last bin includes overflow.
Comparison of data with estimated backgrounds in the $\Delta R(b_1,b_2)$ distribution with the STCR1 event selection except for the requirement on $\Delta R(b_1,b_2)$. The predicted backgrounds are scaled with normalization factors. The uncertainty band includes statistical and all experimental systematic uncertainties. The last bin includes overflow.
Comparison of data with estimated backgrounds in the $\tilde{E}_\text{T}^\text{miss}$ distribution with the TZCR1 event selection except for the requirement on $\tilde{E}_\text{T}^\text{miss}$. The variables $\tilde{E}_\text{T}^\text{miss}$ and $\tilde{m}_\text{T}$ are constructed in the same way as $E_\text{T}^\text{miss}$ and $m_\text{T}$ but treating the leading photon transverse momentum as invisible. The predicted backgrounds are scaled with normalization factors. The uncertainty band includes statistical and all experimental systematic uncertainties. The last bin includes overflow.
Comparison of data with estimated backgrounds in the $\tilde{m}_\text{T}$ distribution with the TZCR1 event selection except for the requirement on $\tilde{m}_\text{T}$. The variables $\tilde{E}_\text{T}^\text{miss}$ and $\tilde{m}_\text{T}$ are constructed in the same way as $E_\text{T}^\text{miss}$ and $m_\text{T}$ but treating the leading photon transverse momentum as invisible. The predicted backgrounds are scaled with normalization factors. The uncertainty band includes statistical and all experimental systematic uncertainties. The last bin includes overflow.
Comparison of the observed data ($n_\text{obs}$) with the predicted background ($n_\text{exp}$) in the validation and signal regions. The background predictions are obtained using the background-only fit configuration. The bottom panel shows the significance of the difference between data and predicted background, where the significance is based on the total uncertainty ($\sigma_\text{tot}$).
Jet multiplicity distributions for events where exactly two signal leptons are selected. No correction factors are included in the background normalizations. The uncertainty band includes statistical and all experimental systematic uncertainties. The last bin includes overflow.
Jet multiplicity distributions for events where exactly one lepton plus one $\tau$ candidate are selected. No correction factors are included in the background normalizations. The uncertainty band includes statistical and all experimental systematic uncertainties. The last bin includes overflow.
The $E_\text{T}^\text{miss}$ distribution in SR1. In the plot, the full event selection in the corresponding signal region is applied, except for the requirement on $E_\text{T}^\text{miss}$. The predicted backgrounds are scaled with normalization factors. The uncertainty band includes statistical and all experimental systematic uncertainties. The last bin contains the overflow. Benchmark signal models are overlaid for comparison. The benchmark models are specified by the gluino and stop masses, given in TeV in the table.
The $m_\text{T}$ distribution in SR1. In the plot, the full event selection in the corresponding signal region is applied, except for the requirement on $m_\text{T}$. The predicted backgrounds are scaled with normalization factors. The uncertainty band includes statistical and all experimental systematic uncertainties. The last bin contains the overflow. Benchmark signal models are overlaid for comparison. The benchmark models are specified by the gluino and stop masses, given in TeV in the table.
Expected (black dashed) 95% excluded regions in the plane of $m_{\tilde{g}}$ versus $m_{\tilde{t}_1}$ for gluino-mediated stop production.
Observed (red solid) 95% excluded regions in the plane of $m_{\tilde{g}}$ versus $m_{\tilde{t}_1}$ for gluino-mediated stop production.
Expected (black dashed) 95% excluded regions in the plane of $m_{\tilde{t}_1}$ versus $m_{\tilde{\chi}_1^0}$ for direct stop production.
Observed (red solid) 95% excluded regions in the plane of $m_{\tilde{t}_1}$ versus $m_{\tilde{\chi}_1^0}$ for direct stop production.
The expected upper limits on $T$ quark pair production times the squared branching ratio for $T \rightarrow tZ$ as a function of the $T$ quark mass.
The observed upper limits on $T$ quark pair production times the squared branching ratio for $T \rightarrow tZ$ as a function of the $T$ quark mass.
The expected limits on $T$ quarks as a function of the branching ratios $B\left(T \rightarrow bW\right)$ and $B\left(T \rightarrow tH\right)$ for a $T$ quark with a mass of 800 GeV. The $T$ is assumed to decay in three possible ways: $T \to tZ$, $T \to tH$, and $T \to bW$.
The observed limits on $T$ quarks as a function of the branching ratios $B\left(T \rightarrow bW\right)$ and $B\left(T \rightarrow tH\right)$ for a $T$ quark with a mass of 800 GeV. The $T$ is assumed to decay in three possible ways: $T \to tZ$, $T \to tH$, and $T \to bW$.
The $m_\text{T}$ distribution in the WVR2-tail validation region which has the same preselection and jet $p_\text{T}$ requirements as SR2.
The $am_\text{T2}$ distribution in the WVR2-tail validation region which has the same preselection and jet $p_\text{T}$ requirements as SR2.
Large-radius jet mass ($R=1.2$), decomposed into the number of small-radius jet constituents. The lower panel shows the ratio of the total data to the total prediction (summed over all jet multiplicities). Events are required to have one lepton, four jets with $p_\text{T}>80,50,40,40$ GeV, at least one $b$-tagged jet, $E_\text{T}^\text{miss}>200$ GeV, and $m_\text{T}>30$ GeV.
Distribution of $m_\text{T2}^\tau$ in data for a selection enriched in $t\bar{t}$ events with one hadronically decaying $\tau$. Events that have no hadronic $\tau$ candidate (that passes the Loose identification criteria, as well as other requirements) are not shown in the plot.
Upper limits on the model cross-section in units of pb for the gluino-mediated stop models.
Upper limits on the model cross-section in units of pb for the models with direct stop pair production.
Illustration of the best expected signal region per signal grid point for the gluino-mediated stop models. This mapping is used for the final combined exclusion limits.
Illustration of the best expected signal region per signal grid point for models with direct stop pair production. This mapping is used for the final combined exclusion limits.
Expected $CL_s$ values for the gluino-mediated stop models.
Observed $CL_s$ values for the gluino-mediated stop models.
Expected $CL_s$ values for the direct stop pair production models.
Observed $CL_s$ values for the direct stop pair production models.
Expected limit using SR1 for models with direct stop pair production and an unpolarized stop (and bino LSP).
Expected limit using SR1 for models with direct stop pair production with $\tilde{t}_1=\tilde{t}_L$ (and bino LSP).
Expected limit using SR1 for models with direct stop pair production with $\tilde{t}_1\sim\tilde{t}_R$ (and bino LSP).
Observed limit using SR1 for models with direct stop pair production and an unpolarized stop (and bino LSP).
Observed limit using SR1 for models with direct stop pair production with $\tilde{t}_1=\tilde{t}_L$ (and bino LSP).
Observed limit using SR1 for models with direct stop pair production with $\tilde{t}_1\sim\tilde{t}_R$ (and bino LSP).
Expected limit using SR2 for models with direct stop pair production and an unpolarized stop (and bino LSP).
Expected limit using SR2 for models with direct stop pair production with $\tilde{t}_1=\tilde{t}_L$ (and bino LSP).
Expected limit using SR2 for models with direct stop pair production with $\tilde{t}_1\sim\tilde{t}_R$ (and bino LSP).
Observed limit using SR2 for models with direct stop pair production and an unpolarized stop (and bino LSP).
Observed limit using SR2 for models with direct stop pair production with $\tilde{t}_1=\tilde{t}_L$ (and bino LSP).
Observed limit using SR2 for models with direct stop pair production with $\tilde{t}_1\sim\tilde{t}_R$ (and bino LSP).
Expected limit using SR1+SR2 (best expected) for models with direct stop pair production and an unpolarized stop (and bino LSP).
Expected limit using SR1+SR2 (best expected) for models with direct stop pair production with $\tilde{t}_1=\tilde{t}_L$ (and bino LSP).
Expected limit using SR1+SR2 (best expected) for models with direct stop pair production with $\tilde{t}_1\sim\tilde{t}_R$ (and bino LSP).
Observed limit using SR1+SR2 (best expected) for models with direct stop pair production and an unpolarized stop (and bino LSP).
Observed limit using SR1+SR2 (best expected) for models with direct stop pair production with $\tilde{t}_1=\tilde{t}_L$ (and bino LSP).
Observed limit using SR1+SR2 (best expected) for models with direct stop pair production with $\tilde{t}_1\sim\tilde{t}_R$ (and bino LSP).
Acceptance for SR1 in the gluino-mediated stop models. The acceptance is defined as the fraction of signal events that pass the analysis selection performed on generator-level objects, therefore emulating an ideal detector with perfect particle identification and no measurement resolution effects.
Acceptance for SR1 in the direct stop pair production. The acceptance is defined as the fraction of signal events that pass the analysis selection performed on generator-level objects, therefore emulating an ideal detector with perfect particle identification and no measurement resolution effects.
Acceptance for SR2 in the gluino-mediated stop models. The acceptance is defined as the fraction of signal events that pass the analysis selection performed on generator-level objects, therefore emulating an ideal detector with perfect particle identification and no measurement resolution effects.
Acceptance for SR2 in the direct stop pair production. The acceptance is defined as the fraction of signal events that pass the analysis selection performed on generator-level objects, therefore emulating an ideal detector with perfect particle identification and no measurement resolution effects.
Acceptance for SR3 in the gluino-mediated stop models. The acceptance is defined as the fraction of signal events that pass the analysis selection performed on generator-level objects, therefore emulating an ideal detector with perfect particle identification and no measurement resolution effects.
Acceptance for SR3 in the direct stop pair production. The acceptance is defined as the fraction of signal events that pass the analysis selection performed on generator-level objects, therefore emulating an ideal detector with perfect particle identification and no measurement resolution effects.
Efficiency for SR1 in the gluino-mediated stop models. The efficiency is the ratio between the expected signal rate calculated with simulated data passing all the reconstruction level cuts applied to reconstructed objects, and the signal rate for an ideal detector (with perfect particle identification and no measurement resolution effects).
Efficiency for SR1 in the direct stop pair production. The efficiency is the ratio between the expected signal rate calculated with simulated data passing all the reconstruction level cuts applied to reconstructed objects, and the signal rate for an ideal detector (with perfect particle identification and no measurement resolution effects).
Efficiency for SR2 in the gluino-mediated stop models. The efficiency is the ratio between the expected signal rate calculated with simulated data passing all the reconstruction level cuts applied to reconstructed objects, and the signal rate for an ideal detector (with perfect particle identification and no measurement resolution effects).
Efficiency for SR2 in the direct stop pair production. The efficiency is the ratio between the expected signal rate calculated with simulated data passing all the reconstruction level cuts applied to reconstructed objects, and the signal rate for an ideal detector (with perfect particle identification and no measurement resolution effects).
Efficiency for SR3 in the gluino-mediated stop models. The efficiency is the ratio between the expected signal rate calculated with simulated data passing all the reconstruction level cuts applied to reconstructed objects, and the signal rate for an ideal detector (with perfect particle identification and no measurement resolution effects).
Efficiency for SR3 in the direct stop pair production. The efficiency is the ratio between the expected signal rate calculated with simulated data passing all the reconstruction level cuts applied to reconstructed objects, and the signal rate for an ideal detector (with perfect particle identification and no measurement resolution effects).
A search for Supersymmetry involving the pair production of gluinos decaying via third-generation squarks to the lightest neutralino is reported. It uses an LHC proton--proton dataset at a center-of-mass energy $\sqrt{s} = 13$ TeV with an integrated luminosity of 3.2 fb$^{-1}$ collected with the ATLAS detector in 2015. The signal is searched for in events containing several energetic jets, of which at least three must be identified as $b$-jets, large missing transverse momentum and, potentially, isolated electrons or muons. Large-radius jets with a high mass are also used to identify highly boosted top quarks. No excess is found above the predicted background. For neutralino masses below approximately 700 GeV, gluino masses of less than 1.78 TeV and 1.76 TeV are excluded at the 95% CL in simplified models of the pair production of gluinos decaying via sbottom and stop, respectively. These results significantly extend the exclusion limits obtained with the $\sqrt{s} = 8$ TeV dataset.
Distribution of missing transverse energy for SR-Gbb-B.
Distribution of missing transverse energy for SR-Gtt-0L-C.
Distribution of missing transverse energy for SR-Gtt-1L-A.
Expected 95% CL exclusion contour for the Gbb signal.
Observed 95% CL exclusion contour for the Gbb signal.
Expected 95% CL exclusion contour for the Gtt combination.
Observed 95% CL exclusion contour for the Gtt combination.
Acceptances for the Gbb model in SR-Gbb-A. Acceptance is evaluated at truth level, with only leptons from heavy bosons and taus considered, and no further quality or isolation criteria applied in their selection.
Acceptances for the Gbb model in SR-Gbb-B. Acceptance is evaluated at truth level, with only leptons from heavy bosons and taus considered, and no further quality or isolation criteria applied in their selection.
Acceptances for the Gbb model in SR-Gbb-C. Acceptance is evaluated at truth level, with only leptons from heavy bosons and taus considered, and no further quality or isolation criteria applied in their selection.
Acceptances for the Gtt model in SR-Gtt-0L-A. Acceptance is evaluated at truth level, with only leptons from heavy bosons and taus considered, and no further quality or isolation criteria applied in their selection.
Acceptances for the Gtt model in SR-Gtt-0L-B. Acceptance is evaluated at truth level, with only leptons from heavy bosons and taus considered, and no further quality or isolation criteria applied in their selection.
Acceptances for the Gtt model in SR-Gtt-0L-C. Acceptance is evaluated at truth level, with only leptons from heavy bosons and taus considered, and no further quality or isolation criteria applied in their selection.
Acceptances for the Gtt model in SR-Gtt-1L-A. Acceptance is evaluated at truth level, with only leptons from heavy bosons and taus considered, and no further quality or isolation criteria applied in their selection.
Acceptances for the Gtt model in SR-Gtt-1L-B. Acceptance is evaluated at truth level, with only leptons from heavy bosons and taus considered, and no further quality or isolation criteria applied in their selection.
Acceptance times efficiency for the Gbb model in SR-Gbb-A.
Acceptance times efficiency for the Gbb model in SR-Gbb-B.
Acceptance times efficiency for the Gbb model in SR-Gbb-C.
Acceptance times efficiency for the Gtt model in SR-Gtt-0L-A.
Acceptance times efficiency for the Gtt model in SR-Gtt-0L-B.
Acceptance times efficiency for the Gtt model in SR-Gtt-0L-C.
Acceptance times efficiency for the Gtt model in SR-Gtt-1L-A.
Acceptance times efficiency for the Gtt model in SR-Gtt-1L-B.
95% CL upper limit on the cross-section times branching ratio (in fb) for the Gbb model in SR-Gbb-A.
95% CL upper limit on the cross-section times branching ratio (in fb) for the Gbb model in SR-Gbb-B.
95% CL upper limit on the cross-section times branching ratio (in fb) for the Gbb model in SR-Gbb-C.
95% CL upper limit on the cross-section times branching ratio (in fb) for the Gtt model in SR-Gtt-0L-A.
95% CL upper limit on the cross-section times branching ratio (in fb) for the Gtt model in SR-Gtt-0L-B.
95% CL upper limit on the cross-section times branching ratio (in fb) for the Gtt model in SR-Gtt-0L-C.
95% CL upper limit on the cross-section times branching ratio (in fb) for the Gtt model in SR-Gtt-1L-A.
95% CL upper limit on the cross-section times branching ratio (in fb) for the Gtt model in SR-Gtt-1L-B.
Signal region yielding the best expected sensitivity for each point of the parameter space in the Gbb model.
Signal region yielding the best expected sensitivity for each point of the parameter space in the Gtt model for the 0-lepton channel.
Signal region yielding the best expected sensitivity for each point of the parameter space in the Gtt model for the 1-lepton channel.
Combination of two 0-lepton and 1-lepton signal regions yielding the best expected sensitivity for each point of the parameter space in the Gtt model.
A search for strongly produced supersymmetric particles is conducted using signatures involving multiple energetic jets and either two isolated leptons ($e$ or $\mu$) with the same electric charge or at least three isolated leptons. The search also utilises $b$-tagged jets, missing transverse momentum and other observables to extend its sensitivity. The analysis uses a data sample of proton-proton collisions at $\sqrt{s}=13$ TeV recorded with the ATLAS detector at the Large Hadron Collider in 2015 corresponding to a total integrated luminosity of 3.2 fb$^{-1}$. No significant excess over the Standard Model expectation is observed. The results are interpreted in several simplified supersymmetric models and extend the exclusion limits from previous searches. In the context of exclusive production and simplified decay modes, gluino masses are excluded at 95% confidence level up to 1.1-1.3 TeV for light neutralinos (depending on the decay channel), and bottom squark masses are also excluded up to 540 GeV. In the former scenarios, neutralino masses are also excluded up to 550-850 GeV for gluino masses around 1 TeV.
Missing transverse momentum distribution after SR0b3j selection, beside the $E_\mathrm{T}^\mathrm{miss}$ requirement. The results in the signal region correspond to the last inclusive bin. The systematic uncertainties include theory uncertainties for the backgrounds with prompt SS/3L and the full systematic uncertainties for data-driven backgrounds. For illustration the distribution for a benchmark SUSY scenario ($pp\to \tilde g\tilde g$, $\tilde g\to qq(\tilde\ell\ell/\tilde\nu\nu)$, $m_{\tilde g}=1.3$ TeV, $m_{\tilde\chi_1^0}=0.5$ TeV) is also shown.
Missing transverse momentum distribution after SR0b5j selection, beside the $E_\mathrm{T}^\mathrm{miss}$ requirement. The results in the signal region correspond to the last inclusive bin. The systematic uncertainties include theory uncertainties for the backgrounds with prompt SS/3L and the full systematic uncertainties for data-driven backgrounds. For illustration the distribution for a benchmark SUSY scenario ($pp\to \tilde g\tilde g$, $\tilde g\to qqWZ\tilde\chi_1^0$, $m_{\tilde g}=1.1$ TeV, $m_{\tilde\chi_1^0}=0.4$ TeV) is also shown.
Missing transverse momentum distribution after SR1b selection, beside the $E_\mathrm{T}^\mathrm{miss}$ requirement. The results in the signal region correspond to the last inclusive bin. The systematic uncertainties include theory uncertainties for the backgrounds with prompt SS/3L and the full systematic uncertainties for data-driven backgrounds. For illustration the distribution for a benchmark SUSY scenario ($pp\to \tilde b_1\tilde b_1^*$, $\tilde b_1\to tW\tilde\chi_1^0$, $m_{\tilde b_1}=600$ GeV, $m_{\tilde\chi_1^0}=50$ GeV) is also shown.
Missing transverse momentum distribution after SR3b selection, beside the $E_\mathrm{T}^\mathrm{miss}$ requirement. The results in the signal region correspond to the last inclusive bin. The systematic uncertainties include theory uncertainties for the backgrounds with prompt SS/3L and the full systematic uncertainties for data-driven backgrounds. For illustration the distribution for a benchmark SUSY scenario ($pp\to \tilde g\tilde g$, $\tilde g\to t\bar t\tilde\chi_1^0$, $m_{\tilde g}=1.2$ TeV, $m_{\tilde\chi_1^0}=0.7$ TeV) is also shown.
Observed exclusion limits on the $\tilde g$ and $\tilde\chi_1^0$ masses in the context of SUSY scenarios with simplified mass spectra featuring $\tilde g\tilde g$ pair production with exclusive $\tilde g\to qq(\tilde\ell\ell/\tilde\nu\nu)$ decays. All limits are computed at 95% CL.
Expected exclusion limits on the $\tilde g$ and $\tilde\chi_1^0$ masses in the context of SUSY scenarios with simplified mass spectra featuring $\tilde g\tilde g$ pair production with exclusive $\tilde g\to qq(\tilde\ell\ell/\tilde\nu\nu)$ decays. All limits are computed at 95% CL.
Upper limits on signal cross-sections as function of the $\tilde g$ and $\tilde\chi_1^0$ masses in the context of SUSY scenarios with simplified mass spectra featuring $\tilde g\tilde g$ pair production with exclusive $\tilde g\to qq(\tilde\ell\ell/\tilde\nu\nu)$ decays, obtained using the signal efficiency and acceptance specific to each model. All limits are computed at 95% CL.
Observed exclusion limits on the $\tilde g$ and $\tilde\chi_1^0$ masses in the context of SUSY scenarios with simplified mass spectra featuring $\tilde g\tilde g$ pair production with exclusive $\tilde g\to qqWZ\tilde\chi_1^0$ decays. All limits are computed at 95% CL.
Expected exclusion limits on the $\tilde g$ and $\tilde\chi_1^0$ masses in the context of SUSY scenarios with simplified mass spectra featuring $\tilde g\tilde g$ pair production with exclusive $\tilde g\to qqWZ\tilde\chi_1^0$ decays. All limits are computed at 95% CL.
Upper limits on signal cross-sections as function of the $\tilde g$ and $\tilde\chi_1^0$ masses in the context of SUSY scenarios with simplified mass spectra featuring $\tilde g\tilde g$ pair production with exclusive $\tilde g\to qqWZ\tilde\chi_1^0$ decays, obtained using the signal efficiency and acceptance specific to each model. All limits are computed at 95% CL.
Observed exclusion limits on the $\tilde b_1$ and $\tilde\chi_1^0$ masses in the context of SUSY scenarios with simplified mass spectra featuring $\tilde b_1\tilde b_1^*$ pair production with exclusive $\tilde b_1\to t\tilde\chi_1^-$ decays. All limits are computed at 95% CL.
Expected exclusion limits on the $\tilde b_1$ and $\tilde\chi_1^0$ masses in the context of SUSY scenarios with simplified mass spectra featuring $\tilde b_1\tilde b_1^*$ pair production with exclusive $\tilde b_1\to t\tilde\chi_1^-$ decays. All limits are computed at 95% CL.
Upper limits on signal cross-sections as function of the $\tilde b_1$ and $\tilde\chi_1^0$ masses in the context of SUSY scenarios with simplified mass spectra featuring $\tilde b_1\tilde b_1^*$ pair production with exclusive $\tilde b_1\to t\tilde\chi_1^-$ decays, obtained using the signal efficiency and acceptance specific to each model. All limits are computed at 95% CL.
Observed exclusion limits on the $\tilde g$ and $\tilde\chi_1^0$ masses in the context of SUSY scenarios with simplified mass spectra featuring $\tilde g\tilde g$ pair production with exclusive $\tilde g\to t\bar t\tilde\chi_1^0$ decays. All limits are computed at 95% CL.
Expected exclusion limits on the $\tilde g$ and $\tilde\chi_1^0$ masses in the context of SUSY scenarios with simplified mass spectra featuring $\tilde g\tilde g$ pair production with exclusive $\tilde g\to t\bar t\tilde\chi_1^0$ decays. All limits are computed at 95% CL.
Upper limits on signal cross-sections as function of the $\tilde g$ and $\tilde\chi_1^0$ masses in the context of SUSY scenarios with simplified mass spectra featuring $\tilde g\tilde g$ pair production with exclusive $\tilde g\to t\bar t\tilde\chi_1^0$ decays, obtained using the signal efficiency and acceptance specific to each model. All limits are computed at 95% CL.
SUSY scenario with $\tilde g\tilde g$ production and $\tilde g\to q\bar q(\tilde\ell\ell/\tilde\nu\nu)$ decay: signal acceptance (in %) in the signal region SR0b3j. The benchmark scenarios used to set exclusion limits are materialized by black dot markers. Acceptance and efficiency are defined as in appendix A of [JHEP 06 (2014) 124, arXiv: 1403.4853v1 [hep-ex]].
SUSY scenario with $\tilde g\tilde g$ production and $\tilde g\to q\bar q(\tilde\ell\ell/\tilde\nu\nu)$ decay: reconstruction efficiency (in %) in the signal region SR0b3j. The benchmark scenarios used to set exclusion limits are materialized by black dot markers. Acceptance and efficiency are defined as in appendix A of [JHEP 06 (2014) 124, arXiv: 1403.4853v1 [hep-ex]].
SUSY scenario with $\tilde g\tilde g$ production and $\tilde g\to q\bar qWZ\tilde\chi_1^0$ decay: signal acceptance (in %) in the signal region SR0b5j. The benchmark scenarios used to set exclusion limits are materialized by black dot markers. Acceptance and efficiency are defined as in appendix A of [JHEP 06 (2014) 124, arXiv: 1403.4853v1 [hep-ex]].
SUSY scenario with $\tilde g\tilde g$ production and $\tilde g\to q\bar qWZ\tilde\chi_1^0$ decay: reconstruction efficiency (in %) in the signal region SR0b5j. The benchmark scenarios used to set exclusion limits are materialized by black dot markers. Acceptance and efficiency are defined as in appendix A of [JHEP 06 (2014) 124, arXiv: 1403.4853v1 [hep-ex]].
SUSY scenario with $\tilde b_1\tilde b_1^*$ production and $\tilde b_1\to tW\tilde\chi_1^0$ decay: signal acceptance (in %) in the signal region SR1b. The benchmark scenarios used to set exclusion limits are materialized by black dot markers. Acceptance and efficiency are defined as in appendix A of [JHEP 06 (2014) 124, arXiv: 1403.4853v1 [hep-ex]].
SUSY scenario with $\tilde b_1\tilde b_1^*$ production and $\tilde b_1\to tW\tilde\chi_1^0$ decay: reconstruction efficiency (in %) in the signal region SR1b. The benchmark scenarios used to set exclusion limits are materialized by black dot markers. Acceptance and efficiency are defined as in appendix A of [JHEP 06 (2014) 124, arXiv: 1403.4853v1 [hep-ex]].
SUSY scenario with $\tilde g\tilde g$ production and $\tilde g\to t\bar t\tilde\chi_1^0$ decay: signal acceptance (in %) in the signal region SR3b. The benchmark scenarios used to set exclusion limits are materialized by black dot markers. Acceptance and efficiency are defined as in appendix A of [JHEP 06 (2014) 124, arXiv: 1403.4853v1 [hep-ex]].
SUSY scenario with $\tilde g\tilde g$ production and $\tilde g\to t\bar t\tilde\chi_1^0$ decay: reconstruction efficiency (in %) in the signal region SR3b. The benchmark scenarios used to set exclusion limits are materialized by black dot markers. Acceptance and efficiency are defined as in appendix A of [JHEP 06 (2014) 124, arXiv: 1403.4853v1 [hep-ex]].
Results are reported of a search for new phenomena, such as supersymmetric particle production, that could be observed in high-energy proton--proton collisions. Events with large numbers of jets, together with missing transverse momentum from unobserved particles, are selected. The data analysed were recorded by the ATLAS experiment during 2015 using the 13 TeV centre-of-mass proton--proton collisions at the Large Hadron Collider, and correspond to an integrated luminosity of 3.2 fb$^{-1}$. The search selected events with various jet multiplicities from $\ge 7$ to $\ge 10$ jets, and with various $b$-jet multiplicity requirements to enhance sensitivity. No excess above Standard Model expectations is observed. The results are interpreted within two supersymmetry models, where gluino masses up to 1400 GeV are excluded at 95% confidence level, significantly extending previous limits.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in validation region 7ej50 0b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in validation region 6ej80 0b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region 10j50 0b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region 10j50 2b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region 8j80 0b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region 8j80 2b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
Observed 95% CL limit for the pMSSM grid.
Observed 95% CL limit for the pMSSM grid when the signal cross section is increased by one standard deviation.
Observed 95% CL limit for the pMSSM grid when the signal cross section is decreased by one standard deviation.
Expected 95% CL limit for the pMSSM grid.
+1 sigma excursion of the expected 95% CL limit for the pMSSM grid.
-1 sigma excursion of the expected 95% CL limit for the pMSSM grid.
Observed 95% CL limit for the 2Step grid.
Observed 95% CL limit for the 2Step grid when the signal cross section is increased by one standard deviation.
Observed 95% CL limit for the 2Step grid when the signal cross section is decreased by one standard deviation.
Expected 95% CL limit for the 2Step grid.
+1 sigma excursion of the expected 95% CL limit for the 2Step grid.
-1 sigma excursion of the expected 95% CL limit for the 2Step grid.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region 8j50 0b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region 8j50 1b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region 8j50 2b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region 9j50 0b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region 9j50 1b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region 9j50 2b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region 10j50 0b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region 10j50 1b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region 10j50 2b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region 7j80 0b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region 7j80 1b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region 7j80 2b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region 8j80 0b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region 8j80 1b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
$E_{\mathrm{T}}^{\mathrm{miss}} / \sqrt{H_{\mathrm{T}}}$ distribution in signal region 8j80 2b. Two benchmark signal models are overlaid on the plot for comparison. Labelled `pMSSM' and `2-step', they show signal distributions from the example SUSY models (as described in the paper): a pMSSM slice model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{\pm}}$) = (1300, 200) GeV and a cascade decay model with ($m \tilde{g}$, $m \tilde{\chi_{1}^{0}}$) = (1300, 200) GeV.
Degree of multijet closure for signal and vaidation regions with at no b-jet requirement. The solid lines are the pre-fit predicted numbers of events and the points are the observed numbers. The blue hatched band shows only the statistical (MC and data) uncertainty on the background estimate. The bins labelled in bold are signal regions, while the others are validation regions. The template closure uncertainty for each SR bin is given by the maximal deviation of data from prediction in any non-SR bin to its left on this plot (although those for 80 GeV regions are independent of deviations in 50 GeV regions).
Degree of multijet closure for signal and vaidation regions with at least 1 b-jet. The solid lines are the pre-fit predicted numbers of events and the points are the observed numbers. The blue hatched band shows only the statistical (MC and data) uncertainty on the background estimate. The bins labelled in bold are signal regions, while the others are validation regions. The template closure uncertainty for each SR bin is given by the maximal deviation of data from prediction in any non-SR bin to its left on this plot (although those for 80 GeV regions are independent of deviations in 50 GeV regions).
Degree of multijet closure for signal and vaidation regions with at least 2 b-jets. The solid lines are the pre-fit predicted numbers of events and the points are the observed numbers. The blue hatched band shows only the statistical (MC and data) uncertainty on the background estimate. The bins labelled in bold are signal regions, while the others are validation regions. The template closure uncertainty for each SR bin is given by the maximal deviation of data from prediction in any non-SR bin to its left on this plot (although those for 80 GeV regions are independent of deviations in 50 GeV regions).
Summary of all 15 signal regions (post-fit).
Signal region yielding the best-expected CLs value, the best expected CLs value, and the corresponding observed CLs value for the 2Step grid.
Signal region yielding the best-expected CLs value, the best expected CLs value, and the corresponding observed CLs value for the pMSSM grid.
95% CLs observed upper limit on model cross-section for 2-step signal points for the best-expected signal region.
Performance of the 8j50-0b selection for the pMSSM grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 8j50-1b selection for the pMSSM grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 8j50-2b selection for the pMSSM grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 9j50-0b selection for the pMSSM grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 9j50-1b selection for the pMSSM grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 9j50-2b selection for the pMSSM grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 10j50-0b selection for the pMSSM grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 10j50-1b selection for the pMSSM grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 10j50-2b selection for the pMSSM grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 7j80-0b selection for the pMSSM grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 7j80-1b selection for the pMSSM grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 7j80-2b selection for the pMSSM grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 8j80-0b selection for the pMSSM grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 8j80-1b selection for the pMSSM grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 8j80-2b selection for the pMSSM grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 8j50-0b selection for the 2Step grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 8j50-1b selection for the 2Step grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 8j50-2b selection for the 2Step grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 9j50-0b selection for the 2Step grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 9j50-1b selection for the 2Step grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 9j50-2b selection for the 2Step grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 10j50-0b selection for the 2Step grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 10j50-1b selection for the 2Step grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 10j50-2b selection for the 2Step grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 7j80-0b selection for the 2Step grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 7j80-1b selection for the 2Step grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 7j80-2b selection for the 2Step grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 8j80-0b selection for the 2Step grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 8j80-1b selection for the 2Step grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
Performance of the 8j80-2b selection for the 2Step grid: number of generated signal events; total signal cross-section; acceptance; efficiency (fractional); observed CL using this region alone; expected CL using this region alone.
A search is presented for photonic signatures motivated by generalised models of gauge-mediated supersymmetry breaking. This search makes use of $20.3{\rm fb}^{-1}$ of proton-proton collision data at $\sqrt{s}=8$ TeV recorded by the ATLAS detector at the LHC, and explores models dominated by both strong and electroweak production of supersymmetric partner states. Four experimental signatures incorporating an isolated photon and significant missing transverse momentum are explored. These signatures include events with an additional photon, lepton, $b$-quark jet, or jet activity not associated with any specific underlying quark flavor. No significant excess of events is observed above the Standard Model prediction and model-dependent 95% confidence-level exclusion limits are set.
Observed and expected exclusion limits in the gluino-bino mass plane, using the $\rm{SR}^{\gamma\gamma}_{S-H}$ analysis for $m_{\tilde{\chi}_1^0}\geq 800 {\rm GeV}$ and $\rm{SR}^{\gamma\gamma}_{S-L}$ analyses for $m_{\tilde{\chi}_1^0} < 800 {\rm GeV}$.
Observed and expected exclusion limits in the wino-bino mass plane, using the $\rm{SR}^{\gamma\gamma}_{W-H}$ analysis for $m_{\tilde{\chi}_1^0}\geq 350 {\rm GeV}$ and $\rm{SR}^{\gamma\gamma}_{W-L}$ analyses for $m_{\tilde{\chi}_1^0} < 350 {\rm GeV}$.
Observed exclusion limits in the gluino-neutralino mass plane, for the higgsino-bino GGM model with $\mu < 0$, using the merged $\rm{SR}^{\gamma b}_{L}$ and $\rm{SR}^{\gamma b}_{H}$ analyses.
Expected exclusion limits in the gluino-neutralino mass plane, for the higgsino-bino GGM model with $\mu < 0$, using the merged $\rm{SR}^{\gamma b}_{L}$ and $\rm{SR}^{\gamma b}_{H}$ analyses.
Observed exclusion limits in the $M_3$-$\mu$ plane, for the higgsino-bino GGM model with $\mu > 0$, using the merged $\rm{SR}^{\gamma j}_{L}$ and $\rm{SR}^{\gamma j}_{H}$ analyses.
Expected exclusion limits in the $M_3$-$\mu$ plane, for the higgsino-bino GGM model with $\mu > 0$, using the merged $\rm{SR}^{\gamma j}_{L}$ and $\rm{SR}^{\gamma j}_{H}$ analyses.
Contour of exclusion in wino production cross section from the photon+$\ell$ analysis, as a function of the wino mass parameter $m_{\tilde{W}}$. The expected limit is shown along with its $\pm 1$ and $\pm 2$ standard deviation values.
Numbers of selected data events at progressive stages of the selection, for each SR for the diphoton, photon+j and photon+$\ell$ analyses. Where no number is shown the cut was not applied.
Expected number of signal events at progressive stages of the selection, shown for points in the parameter space that typify the region for which each selection of the diphoton, photon+j and photon+$\ell$ analyses is optimized, and scaled to an integrated luminosity of $20.3\,\mathrm{fb}^{-1}$. Where no number is shown the cut was not applied.
Expected number of signal events at progressive stages of the $\rm{SR}^{\gamma b}_{H}$ selection, shown for data and signal Monte Carlo datasets.
Expected number of signal events at progressive stages of the $\rm{SR}^{\gamma b}_{L}$ selection, shown for data and signal Monte Carlo datasets.
$\rm{SR}^{\gamma\gamma}_{S-H}$ and $\rm{SR}^{\gamma\gamma}_{S-L}$ signal acceptance*efficiency across the strong-production parameter space, for $m_{\tilde{g}}$ between 1550 and 1600 GeV.
$\rm{SR}^{\gamma\gamma}_{S-H}$ and $\rm{SR}^{\gamma\gamma}_{S-L}$ signal acceptance*efficiency across the strong-production parameter space, for $m_{\tilde{g}} = 1500$ GeV.
$\rm{SR}^{\gamma\gamma}_{S-H}$ and $\rm{SR}^{\gamma\gamma}_{S-L}$ signal acceptance*efficiency across the strong-production parameter space, for $m_{\tilde{g}}$ between 1350 and 1450 GeV.
$\rm{SR}^{\gamma\gamma}_{S-H}$ and $\rm{SR}^{\gamma\gamma}_{S-L}$ signal acceptance*efficiency across the strong-production parameter space, for $m_{\tilde{g}}$ between 1250 and 1300 GeV.
$\rm{SR}^{\gamma\gamma}_{S-H}$ and $\rm{SR}^{\gamma\gamma}_{S-L}$ signal acceptance*efficiency across the strong-production parameter space, for $m_{\tilde{g}}$ between 1150 and 1200 GeV.
$\rm{SR}^{\gamma\gamma}_{S-H}$ and $\rm{SR}^{\gamma\gamma}_{S-L}$ signal acceptance*efficiency across the strong-production parameter space, for $m_{\tilde{g}}$ between 1000 and 1100 GeV.
$\rm{SR}^{\gamma\gamma}_{W-H}$ and $\rm{SR}^{\gamma\gamma}_{W-L}$ signal acceptance*efficiency for $m_{\tilde{W}}$ between 650 and 800 GeV.
$\rm{SR}^{\gamma\gamma}_{W-H}$ and $\rm{SR}^{\gamma\gamma}_{W-L}$ signal acceptance*efficiency for $m_{\tilde{W}}$ between 400 and 600 GeV.
$\rm{SR}^{\gamma\gamma}_{W-H}$ and $\rm{SR}^{\gamma\gamma}_{W-L}$ signal acceptance*efficiency for $m_{\tilde{W}}$ between 100 and 400 GeV.
$\rm{SR}^{\gamma b}_{H}$ signal acceptance*efficiency for combined strong and weak production across the $\mu<0$ higgsino-bino parameter space.
$\rm{SR}^{\gamma b}_{L}$ signal acceptance*efficiency for combined strong and weak production across the $\mu<0$ higgsino-bino parameter space.
$\rm{SR}^{\gamma j}_{H}$ signal acceptance*efficiency for combined strong and weak production across the $\mu>0$ higgsino-bino parameter space.
$\rm{SR}^{\gamma j}_{L}$ signal acceptance*efficiency for combined strong and weak production across the $\mu>0$ higgsino-bino parameter space.
Acceptance-times-efficiency (a*e) for the photon+$\ell$ analysis SRs.
The total NLO+NLL strong production cross sections with uncertainties for GGM gluino-neutralino signal points for the diphoton and photon+b analyses. In the variant of the grid used in the diphoton analysis, the electroweak production cross section is negligible.
The total NLO cross sections with uncertainties for GGM wino-bino signal points, for all final states, for the diphoton analysis. The direct bino production cross section is negligible.
The NLO gaugino pair production cross sections with relative uncertainties for GGM gluino-neutralino signal points for the photon+b analysis.
The best signal region used for each signal point in the photon+b analysis.
The total NLO+NLL cross sections with uncertainties for the strong production GGM signal grid for the photon+j analysis.
The total NLO cross sections with uncertainties for the electroweak production GGM signal grid for the photon+j analysis.
The best signal region used for each signal point in the photon+j analysis.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status Email Forum Twitter GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.