Simple inclusive cross sections for p p interactions at 12 GeV/ c are given. The data cover prong cross sections, V 0 production and resonances. Separation has been made into annihilation and non-annihilation modes. Some implications of the data are discussed. It is pointed out that the ratios of cross sections for ϱ 0 π − production are independent of incident antiproton momentum in p p annihilation processes, and that data at the highest available pp energies (ISR) tend to the same value.
This Letter reports measurements of the ratios of $\pi$, K, and p production at large values of transverse momentum in $\pi^- −p$ collisions. The charge ratios, such as $\frac {\pi^−} {\pi^+}$, $\frac {K^−} {K^+}$, and $\frac {\overline{p}}{p}$ are seen to be quite different from those measured in p −p collisions. These ratios are sensitive tests of hard-scattering models, and are compared with theoretical predictions. The particle ratios have also been studied as a function of center-of-mass angle ($\theta^*$) at $\theta^*$ = 90°, 77°, and 60°.
The KS0KS0 system produced in the reaction π−p→nKS0KS0 at 6.0 and 7 0 GeV/c has been studied utilizing the ANL 1.5-m streamer-chamber facility. A 400 000-photograph exposure yielded 5096 unweighted nKS0KS0 events. The cross section for this reaction was determined to be 9.6 ± 1.3 μb at 6.0 GeV/c and 8.7 ± 1.1 μb at 7.0 GeV/c. The decay angular distributions were parametrized in terms of moments of the spherical harmonics. The 〈Y40〉 moment was fitted to interfering Breit-Wigner amplitudes for the f and f′ mesons. Using this fit, the branching ratio R=Γ(f→KK¯)Γ(f→all) was found to be (2.3 ± 0.8)%. An energy-independent production-amplitude analysis revealed an enhancement in the S-wave amplitude near 1300 MeV. The properties of the S-wave enhancement are discussed and compared with those observed in other recent experiments. Extrapolated cross sections for the reaction ππ→KS0KS0 are presented. We find a cross section considerably below the S-wave unitarity limit in the S* region.
In a sample of 108 563 pictures taken with the Fermilab 30-inch hydrogen bubble chamber, exposed to a 360-GeV/c π− beam, we have observed 19 453 interactions in a selected fiducial region. The observed charged multiplicity distribution has been corrected for the effects of scan efficiency, errors in prong count, missed close-in vees, secondary interactions, and neutron stars and for Dalitz pairs. The two-prong events have been corrected for losses at low −t. The total cross section is measured to be 25.25 ± 0.35 mb, and the elastic cross section is 3.61 ± 0.11 mb with an exponential slope of (8.82 ± 0.30) (GeV/c)−2. The average charged-particle multiplicity for inelastic events is 8.73 ± 0.04, and the second moment f2 is measured to be 9.83 ± 0.23.
Using new data from 100 GeV c π − interactions, we find the energy dependence of the invariant cross-section in the target fragmentation (central) region to be consistent with an A + Bs − 1 2 (C + Ds − 1 4 ) behavior. The leading particle peak near x = + 1 exhibits a width in x which becomes smaller with increasing energy and an integrated cross section which is approximately energy independent.
None
The differential and channel cross sections have been measured for the reactions K L 0 p → K S 0 p and K L 0 p → Λ 0 π + in nine energy intervals in the c.m. range 1605 to 1910 MeV. The regeneration reaction is a combination of the KN amplitudes (with I = 0 and 1) and the K N amplitude ( I = 1) and is very sensitive to the various KN phase-shift solutions, some of which show an exotic I = 0, P 1 resonance. Our results have been expressed in terms of frequency distributions and cross sections, normalised by the Λ 0 π + reaction. These results have been compared with the predictions of various partial-wave analyses. Qualitatively we can eliminate the P 1 non-resonant solution, though no solution correctly predicts our results.
We present experimental results on a number of K − p reactions at 14.3 GeV/ c that have three bodies in the final state. The final states are K − ω p , K − π p , Λπ + π − , Λ K + K − , Λp p , K ∗ − ω p , Λ(1520) K + K − and Λ(1520) p p . Whenever, with one exception explained by the Zweig rule, there is a K − or a proton in the final state, there is a diffractive-like threshold enhancement in the mass spectrum of the two recoiling particles. These enhancements account for a large fraction of the events in all but the Λπ + π − final state, where they cannot occur, and which is dominated by resonance production. We find evidence for the Q 1 (1300) decaying into K − ω .
We present experimental results and a partial-wave analysis of the low-mass ( K π) 0 systems produced in the reactions K − p → K π N at 14.3 GeV/ c . The main results concern the production mechanisms of the K ∗ (890) and K ∗ (1420) . We also extract the s-wave component of the K π system as a function of mass.
We discuss the structure of the momentum transfer distributions for the diffractive dissociation processes p → n π + , p → Δ ++ π − and K − → K 890 ∗0 π − . In the near-threshold mass region a clear break of slope is found around t ′KK ∼ 0.25 GeV 2 for the two baryonic channels, whereas no comparable structure is seen for the mesonic system. The K → K ∗ π differential cross section exhibits a nearly exponential behaviour up to t ′ pp ∼ 0.6 GeV 2 , falling over three orders of magnitude. The slope variations and breaks are strongly correlated both to the mass region considered and to the decay angle of the fragmentation system.