We present a measurement of the $\nu_e$-interaction rate in the MicroBooNE detector that addresses the observed MiniBooNE anomalous low-energy excess (LEE). The approach taken isolates neutrino interactions consistent with the kinematics of charged-current quasi-elastic (CCQE) events. The topology of such signal events has a final state with 1 electron, 1 proton, and 0 mesons ($1e1p$). Multiple novel techniques are employed to identify a $1e1p$ final state, including particle identification that use two methods of deep-learning-based image identification, and event isolation using a boosted decision-tree ensemble trained to recognize two-body scattering kinematics. This analysis selects 25 $\nu_e$-candidate events in the reconstructed neutrino energy range of 200--1200 MeV, while $29.0 \pm 1.9_\text{(sys)} \pm 5.4_\text{(stat)}$ are predicted when using $\nu_\mu$ CCQE interactions as a constraint. We use a simplified model to translate the MiniBooNE LEE observation into a prediction for a $\nu_e$ signal in MicroBooNE. A $\Delta \chi^2$ test statistic, based on the combined Neyman--Pearson $\chi^2$ formalism, is used to define frequentist confidence intervals for the LEE signal strength. Using this technique, in the case of no LEE signal, we expect this analysis to exclude a normalization factor of 0.75 (0.98) times the median MiniBooNE LEE signal strength at 90% ($2\sigma$) confidence level, while the MicroBooNE data yield an exclusion of 0.25 (0.38) times the median MiniBooNE LEE signal strength at 90% ($2\sigma$) confidence
Observed NuE data and background (+ LEE) prediction, including the muon neutrino background prediction from the empirical fit, for arXiv:2110.14080. The prediction incorporates the constraint from the 1mu1p sample
Observed NuE data and background (+ LEE) prediction, including the muon neutrino background prediction from the empirical fit, for arXiv:2110.14080. The prediction does not incorporate the constraint from the 1mu1p sample
NuE background fractional covariance matrix after the 1mu1p constraint from arXiv:2110.14080
The observation of an anomalous J/ ψ suppression in Pb–Pb collisions by the NA50 Collaboration can be considered as the most striking indication for the deconfinement of quarks and gluons at SPS energies. In this Letter, we determine the J/ ψ suppression pattern as a function of the forward hadronic energy E ZDC measured in a Zero Degree Calorimeter (ZDC). The direct connection between E ZDC and the geometry of the collision allows us to calculate, within a Glauber approach, the precise relation between the number of participant nucleons N part and E ZDC . Then, we check if the experimental data can be better explained by a sudden or a smooth onset of the anomalous J/ ψ suppression as a function of the number of participants.
Minimum Bias E(C=ZDC) spectrum. Data extracted from fig with g3data, statistical errors not included and are set to 0, the systematic errors given by g3data due to extraction.
Number of participants as a function of E(C=ZDC) Data exctracted from fig with g3data, the systematic errors given by g3data due to extraction, and those marked (stat) are in this case the r.m.s. of the Npart distribution at fixed E(C=ZDC).;.
SIG(J/PSI)/SIG(DY) as a function of E(C=ZDC) with the standard analyses of the 1996 DATA 1996, standard analyses.
Photoproduction at HERA is studied in $ep$ collisions, with the ZEUS detector, for $\gamma p$ centre-of-mass energies ranging from 130-270 GeV. A sample of events with two high-$p_T$ jets ($p_T > 6$ GeV, $\eta <1.6$) and a third cluster in the approximate direction of the electron beam is isolated using a clustering algorithm. These events are mostly due to resolved photoproduction. The third cluster is identified as the photon remnant. Its properties, such as the transverse and longitudinal energy flows around the axis of the cluster, are consistent with those commonly attributed to jets, and in particular with those found for the two jets in these events. The mean value of the photon remnant $p_T$ with respect to the beam axis is measured to be $2.1 \pm 0.2$ GeV, which demonstrates substantial mean transverse momenta for the photon remnant.
Pseudorapidity distribution of the third cluster corrected to the hadron level.
Corrected PT distribution of the third cluster corrected to the hadron level.
Corrected Energy distribution of the third cluster corrected to the hadron level.
We describe a cone-based jet finding algorithm (similar to that used in\(\bar p\)p experiments), which we have applied to hadronic events recorded using the OPAL detector at LEP. Comparisons are made between jets defined with the cone algorithm and jets found by the “JADE” and “Durham” jet finders usually used ine+e− experiments. Measured jet rates, as a function of the cone size and as a function of the minimum jet energy, have been compared with O(αs2) calculations, from which two complementary measurements\(\alpha _s \left( {M_{Z^0 } } \right)\) have been made. The results are\(\alpha _s \left( {M_{Z^0 } } \right)\)=0.116±0.008 and\(\alpha _s \left( {M_{Z^0 } } \right)\)=0.119±0.008 respectively, where the errors include both experimental and theoretical uncertainties. Measurements are presented of the energy flow inside jets defined using the cone algorithm, and compared with equivalent data from\(\bar p\)p interactions, reported by the CDF collaboration. We find that the jets ine+e− are significantly narrower than those observed in\(\bar p\)p. The main contribution to this effect appears to arise from differences between quark- and gluon-induced jets.
Measured 2 jet production rate as a function of EPSILON, the minimum energy of a jet for a fixed cone radius R = 0.7 radians.
Measured 2 jet production rate as a function of R, the jet cone radius, for a fixed value of the minimum jet energy, EPSILON, of 7 GeV.
Measured 3 jet production rate as a function of EPSILON, the minimum energy of a jet for a fixed cone radius R = 0.7 radians.
The process e + e − →e + e − μ + μ − has been studied in single-tag and double-tag configurations using the TOPAZ detector at TRISTAN. The data correspond to the integrated luminosity of 45.3pb − at center-of-mass energies ranging from 52 to 61.4 GeV. The observed events in both configurations have shown a good agreement with QED predictions in order α 4 . Although the AMY group reported an excess of e + e − →e + e − μ + μ − events in double-tag mode at low muon invariant mass region less than 1.0 GeV/c 2 , we did not observed such excess in our data.
No description provided.
Direct photon production in hadronic events from e+e− annihilation has been studied at s=29 GeV with use of the MAC detector at the PEP storage ring. A charge asymmetry A=(−12.3±3.5)% is observed in the final-state jets. The cross section and the charge asymmetry are in good agreement with the predictions of the fractionally charged quark-parton model. Both the charge asymmetry and total yield have been used to determine values of quark charges. Limits have been established for anomalous sources of direct photons.
No description provided.
No description provided.