We present searches for light dark matter (DM) with masses 3-9 GeV/$c^2$ in the presence of coherent elastic neutrino-nucleus scattering (CE$ν$NS) from $^{8}$B solar neutrinos with the LUX-ZEPLIN experiment. This analysis uses a 5.7 tonne-year exposure with data collected between March 2023 and April 2025. In an energy range spanning 1-6 keV, we report no significant excess of events attributable to dark matter nuclear recoils, but we observe a significant signal from $^{8}$B CE$ν$NS interactions that is consistent with expectation. We set world-leading limits on spin-independent and spin-dependent-neutron DM-nucleon interactions for masses down to 5 GeV/$c^2$. In the no-dark-matter scenario, we observe a signal consistent with $^{8}$B CE$ν$NS events, corresponding to a $4.5σ$ statistical significance. This is the most significant evidence of $^{8}$B CE$ν$NS interactions and is enabled by robust background modeling and mitigation techniques. This demonstrates LZ's ability to detect rare signals at keV-scale energies.
90% CL WIMP SI cross sections, including sensitivities
90% CL WIMP SDn cross sections, including sensitivities and nuclear structure uncertainties
90% CL WIMP SDp cross sections, including sensitivities and nuclear structure uncertainties
The GlueX experiment at Jefferson Lab has observed $p\bar{p}$ and, for the first time, $Λ\barΛ$ and $p\barΛ$ photoproduction from a proton target at photon energies up to 11.6 GeV. The angular distributions are forward peaked for all produced pairs, consistent with Regge-like $t$-channel exchange. Asymmetric wide-angle anti-baryon distributions show the presence of additional processes. In a phenomenological model, we find consistency with a double $t$-channel exchange process where anti-baryons are created only at the middle vertex. The model matches all observed distributions with a small number of free parameters. In the hyperon channels, we observe a clear distinction between photoproduction of the $Λ\barΛ$ and $p\barΛ$ systems but general similarity to the $p\bar{p}$ system. We report both total cross sections and cross sections differential with respect to momentum transfer and the invariant masses of the created particle pairs. No narrow resonant structures were found in these reaction channels. The suppression of $s\bar{s}$ quark pairs relative to $d\bar{d}$ quark pairs is similar to what has been seen in other reactions.
Measured $\frac{d\sigma}{dm_{\Lambda\bar{\Lambda}}}~[\mathrm{nb/GeV}]$ for reaction $\gamma p\to \{\Lambda \bar{\Lambda}\} p$ including data of $6.5 \leq E_{\gamma} \leq 11.5$ [GeV], splitted in 10 energy bins (each as a column in the table). The observable $m_{\Lambda\bar{\Lambda}}$ is in unit of $[\mathrm{nb/GeV}]$ and is divided into bins of width 0.05 $[\mathrm{GeV}]$ (each as a row in the table). The global systematic uncertainty is 19% (not included in the table), with contributions of 5% from kinematic fitting, 10% from data selection, 5% from flux normalization, 13% from tracking efficiency, 3% from model dependence, and 6% from run-period variations.
Measured $\frac{d\sigma}{dm_{p\bar{\Lambda}}}~[\mathrm{nb/GeV}]$ for reaction $\gamma p\to \{p \bar{\Lambda}\} \Lambda$ including data of $6.5 \leq E_{\gamma} \leq 11.5$ [GeV], splitted in 10 energy bins (each as a column in the table). The observable $m_{p\bar{\Lambda}}$ is in unit of $[\mathrm{nb/GeV}]$ and is divided into bins of width 0.1 $[\mathrm{GeV}]$ (each as a row in the table). The global systematic uncertainty is 22% (not included in the table), with contributions of 2% from kinematic fitting, 10% from data selection, 5% from flux normalization, 15% from tracking efficiency, 3% from model dependence, and 10% from run-period variations.
Measured $\frac{d\sigma}{dm_{p\bar{p}}}~[\mathrm{nb/GeV}]$ for reaction $\gamma p\to \{p \bar{p}\} p$ including data of $3.5 \leq E_{\gamma} \leq 11.5$ [GeV], splitted in 15 energy bins (each as a column in the table). The observable $m_{p\bar{p}}$ is in unit of $[\mathrm{nb/GeV}]$ and is divided into bins of width 0.044 $[\mathrm{GeV}]$ (each as a row in the table). The global systematic uncertainty is 13% (not included in the table), with contributions of 8% from kinematic fitting, 4% from data selection, 5% from flux normalization, 8% from tracking efficiency, 3% from model dependence, and 1% from run-period variations.
While dual-phase xenon time projection chambers (TPCs) have driven the sensitivity towards weakly interacting massive particles (WIMPs) at the GeV/c^2 to TeV/c^2 mass scale, the scope for sub-GeV/c^2 dark matter particles is hindered by a limited nuclear recoil energy detection threshold. One approach to probe for lighter candidates is to consider cases where they have been boosted by collisions with cosmic rays in the Milky Way, such that the additional kinetic energy lifts their induced signatures above the nominal threshold. In this Letter, we report first results of a search for cosmic ray-boosted dark matter (CRDM) with a combined 4.2 tonne-year exposure from the LUX-ZEPLIN (LZ) experiment. We observe no excess above the expected backgrounds and establish world-leading constraints on the spin-independent CRDM-nucleon cross section as small as 3.9 * 10^{-33} cm^2 at 90% confidence level for sub-GeV/c^2 masses.
90% CL CRDM-nucleon cross sections
The total cross section for Compton scattering off atomic electrons, $γ+e\rightarrowγ'+e'$, was measured using photons with energies between 6.5 and 11.1 GeV incident on a $^9$Be target as part of the PrimEx-eta experiment in Hall D at Jefferson Lab. This is the first measurement of this fundamental QED process within this energy range. The total uncertainties of the cross section, combining the statistical and systematic components in quadrature, averaged to 3.4% across all energy bins. This not only demonstrates the capability of this experimental setup to perform precision cross-section measurements at forward angles but also allows us to compare with state-of-the-art QED calculations.
$\gamma +e^- \rightarrow \gamma + e^-$ total cross section in bins of photon beam energy. The first uncertainties are statistical, and the second are systematic.
We measure the spin-density matrix elements (SDMEs) for the photoproduction of $ϕ(1020)$ off of the proton in its decay to $K_S^0K_L^0$, using 105 pb$^{-1}$ of data collected with a linearly polarized photon beam using the GlueX experiment. The SDMEs are measured in nine bins of the squared four-momentum transfer $t$ in the range $-t=0.15-1.0$ GeV$^2$, providing the first measurement of their $t$-dependence for photon beam energies $E_γ= 8.2-8.8$ GeV. We confirm the dominance of Pomeron exchange in this region, and put constraints on the contribution of other Regge exchanges. We also find that helicity amplitudes where the helicity of the photon and the $ϕ(1020)$ differ by two units are negligible.
Spin-density matrix elements of $\phi(1020)$ mesons produced by a linearly polarized photon beam in the helicity system. For each bin of $-t$, the limits of the bin range are given, along with the average $-\bar t$ and root-mean-square deviation $-t_\text{RMS}$ of all events that fall within the bin.
A measurement of the WZ$γ$ triboson production cross section is presented. The analysis is based on a data sample of proton-proton collisions at a center-of-mass energy of $\sqrt{s}$ = 13 TeV recorded with the CMS detector at the LHC, corresponding to an integrated luminosity of 138 fb$^{-1}$. The analysis focuses on the final state with three charged leptons, $\ell^\pmν\ell^+\ell^-$, where $\ell$ = e or $μ$, accompanied by an additional photon. The observed (expected) significance of the WZ$γ$ signal is 5.4 (3.8) standard deviations. The cross section is measured in a fiducial region, where events with an $\ell$ originating from a tau lepton decay are excluded, to be 5.48 $\pm$ 1.11 fb, which is compatible with the prediction of 3.69 $\pm$ 0.24 fb at next-to-leading order in quantum chromodynamics. Exclusion limits are set on anomalous quartic gauge couplings and on the production cross sections of massive axion-like particles.
The distributions of the variables used in the simultaneous fit for the nonprompt $l$ CR. The black points with error bars represent the data and their statistical uncertainties, whereas the shaded band represents the predicted uncertainties. The bottom panel in each figure shows the ratio of the number of events observed in data to that of the total SM prediction. The last bin of each plot has been extended to include the overflow contribution.
The distributions of the variables used in the simultaneous fit for the nonprompt $\gamma$ CR. The black points with error bars represent the data and their statistical uncertainties, whereas the shaded band represents the predicted uncertainties. The bottom panel in each figure shows the ratio of the number of events observed in data to that of the total SM prediction. The last bin of each plot has been extended to include the overflow contribution.
The distributions of the variables used in the simultaneous fit for the ZZ CR. The black points with error bars represent the data and their statistical uncertainties, whereas the shaded band represents the predicted uncertainties. The bottom panel in each figure shows the ratio of the number of events observed in data to that of the total SM prediction. The last bin of each plot has been extended to include the overflow contribution.
A search for $t$-channel exchange of leptoquarks (LQs) is performed in dimuon and dielectron spectra using proton-proton collision data collected at $\sqrt{s}$ = 13 TeV with the CMS detector at the CERN LHC. The data correspond to an integrated luminosity of 138 fb$^{-1}$. Eight scenarios are considered, in which scalar or vector LQs couple up or down quarks to muons or electrons, for dilepton invariant masses above 500 GeV. The LQ masses are probed up to 5 TeV, beyond a regime probed by previous pair-production and single-production searches. The differential distributions of dilepton events are fit to templates that model the nonresonant LQ exchange and various standard model background processes. Limits are set on LQ-fermion coupling strengths for scalar and vector LQ masses in the 1-5 TeV range at 95% confidence level, establishing stringent limits on first- and second-generation LQs.
Observed and Expected UL exclusions on the $BR(H\to SUEP)$ of hadronic signals with $m_{A'} = 0.7\;GeV$ and $BR(A' \rightarrow ee) = BR(A' \rightarrow \mu\mu) = 0.15$ and $BR(A' \rightarrow \pi\pi) = 0.7$.
The observed data in the dielectron channel and the fitted signal-plus-background templates, shown for the $S_{e u}$ scenario with a candidate LQ mass of 2.5 TeV. Distributions of events are binned in the reconstructed dilepton mass, rapidity, and cosine theta.
Observed and Expected UL exclusions on the $BR(H\to S)$ of leptonic signals with $m_{A'} = 0.5\;GeV$ and $BR(A' \rightarrow ee) = BR(A' \rightarrow \mu\mu) = 0.2$ and $BR(A' \rightarrow \pi\pi) = 0.6$.
We measure for the first time the differential photoproduction cross section $d\sigma/dt$ of the $a_2(1320)$ meson at an average photon beam energy of 8.5~GeV, using data with an integrated luminosity of 104~pb$^{-1}$ collected by the GlueX experiment. We fully reconstruct the $\gamma p \to \eta\pi^0 p$ reaction and perform a partial-wave analysis in the $a_2(1320)$ mass region with amplitudes that incorporate the linear polarization of the beam. This allows us to separate for the first time the contributions of natural- and unnatural-parity exchanges. These measurements provide novel information about the photoproduction mechanism, which is critical for the search for spin-exotic states.
$a_2(1320)$ parity asymmetry, $P_{\sigma}$, in bins of four-momentum transfer. The first uncertainty is statistical, the second systematic.
$a_2(1320)$ differential cross section split into different reflectivity components, $\frac{d\sigma^+}{dt}$ and $\frac{d\sigma^-}{dt}$, in bins of four-momentum transfer. The first uncertainty is statistical, the second systematic.
$a_2(1320)$ differential cross section in the m=-1 projection split into different reflectivity components, $\frac{d\sigma^+_{-1}}{dt}$ and $\frac{d\sigma^-_{-1}}{dt}$, in bins of four-momentum transfer. The first uncertainty is statistical, the second systematic.
We report results of a search for nuclear recoils induced by weakly interacting massive particle (WIMP) dark matter using the LUX-ZEPLIN (LZ) two-phase xenon time projection chamber. This analysis uses a total exposure of $4.2\pm0.1$ tonne-years from 280 live days of LZ operation, of which $3.3\pm0.1$ tonne-years and 220 live days are new. A technique to actively tag background electronic recoils from $^{214}$Pb $β$ decays is featured for the first time. Enhanced electron-ion recombination is observed in two-neutrino double electron capture decays of $^{124}$Xe, representing a noteworthy new background. After removal of artificial signal-like events injected into the data set to mitigate analyzer bias, we find no evidence for an excess over expected backgrounds. World-leading constraints are placed on spin-independent (SI) and spin-dependent WIMP-nucleon cross sections for masses $\geq$9 GeV/$c^2$. The strongest SI exclusion set is $2.2\times10^{-48}$ cm$^{2}$ at the 90% confidence level and the best SI median sensitivity achieved is $5.1\times10^{-48}$ cm$^{2}$, both for a mass of 40 GeV/$c^2$.
90% CL WIMP SI cross sections, including sensitivities
90% CL WIMP SI cross sections, including sensitivities
90% CL WIMP SDn cross sections, including sensitivities and nuclear structure uncertainties
The multiplicities of positive and negative pions, kaons and unidentified hadrons produced in deep-inelastic scattering are measured in bins of the Bjorken scaling variable $x$, the relative virtual-photon energy $y$ and the fraction of the virtual-photon energy transferred to the final-state hadron $z$. Data were obtained by the COMPASS Collaboration using a 160 GeV muon beam of both electric charges and a liquid hydrogen target. These measurements cover the kinematic domain with photon virtuality $Q^2 > 1$ (GeV/$c)^2$, $0.004 < x < 0.4$, $0.1 < y < 0.7$ and $0.2 < z < 0.85$, in accordance with the kinematic domain used in earlier published COMPASS multiplicity measurements with an isoscalar target. The calculation of radiative corrections was improved by using the Monte Carlo generator DJANGOH, which results in up to 12% larger corrections in the low-$x$ region.
h+/h- multiplicities in (x, y, z) bins with corrections, applied corrections for VM and RC are provided in the table
pi+/pi- multiplicities in (x, y, z) bins with corrections, applied corrections for VM and RC are provided in the table
K+/K- multiplicities in (x, y, z) bins with corrections, applied corrections for VM and RC are provided in the table