Pi+- proton elastic scattering at 180 degrees from 0.60 to 1.60 gev/c

Rothschild, R.E. ; Bowen, T. ; Caldwell, P.K. ; et al.
Phys.Rev.D 5 (1972) 499-505, 1972.
Inspire Record 74554 DOI 10.17182/hepdata.3523

The differential cross section for π±−p elastic scattering at 180° was measured from 0.572 to 1.628 GeVc using a double-arm scintillation-counter spectrometer with an angular acceptance θ* in the center-of-mass system defined by −1.00≤cosθ*≤−0.9992. The π+−p cross section exhibits a large dip at 0.737 GeVc and a broad peak centered near 1.31 GeVc. The π−−p cross section exhibits peaks at 0.69, 0.97, and 1.43 GeVc.

88 data tables match query

No description provided.

No description provided.

No description provided.

More…

Operation and Performance of a System for $\pi p$ and $\pi D$ Backward Scattering

Stanovnik, A. ; Kernel, G. ; Tanner, N.W. ; et al.
Nucl.Instrum.Meth. 177 (1980) 369, 1980.
Inspire Record 152948 DOI 10.17182/hepdata.41451

A simple, large-solid-angle apparatus, specially suited for the measurement of backward elastic scattering of medium-energy pions on protons and deuterons, is described. The method of analysis which reduces background and determines elastic events from a data sample of 185 MeV negative pions incident on a D 2 O target is discussed. Results for 141 MeV π + p and 185 MeV π − p backward cross-sections are also presented and compared with cross-sections calculated from known phase shifts.

2 data tables match query

pi+- p differential cross sections at low energies.

Denz, H. ; Amaudruz, P. ; Brack, J.T. ; et al.
Phys.Lett.B 633 (2006) 209-213, 2006.
Inspire Record 699647 DOI 10.17182/hepdata.31620

Differential cross sections for pi- p and pi+ p elastic scattering were measured at five energies between 19.9 and 43.3 MeV. The use of the CHAOS magnetic spectrometer at TRIUMF, supplemented by a range telescope for muon background suppression, provided simultaneous coverage of a large part of the full angular range, thus allowing very precise relative cross section measurements. The absolute normalisation was determined with a typical accuracy of 5 %. This was verified in a simultaneous measurement of muon proton elastic scattering. The measured cross sections show some deviations from phase shift analysis predictions, in particular at large angles and low energies. From the new data we determine the real part of the isospin forward scattering amplitude.

12 data tables match query

Elastic PI- P cross section for incident kinetic energy 43.3 MeV for the rotated target data. Errors shown are statistical only.

Elastic PI- P cross section for incident kinetic energy 43.3 MeV. Errors shown are statistical only.

Elastic PI- P cross section for incident kinetic energy 37.1 MeV. Errors shown are statistical only.

More…

Elastic Scattering of Positive Pions by Protons in the Energy Range 500-1600 MeV

Helland, Jerome A. ; Devlin, Thomas J. ; Hagge, Donald E. ; et al.
Phys.Rev. 134 (1964) B1062-B1078, 1964.
Inspire Record 46850 DOI 10.17182/hepdata.597

Differential cross sections for the elastic scattering of positive pi mesons by protons were measured at the Berkeley Bevatron at pion laboratory kinetic energies between 500 and 1600 MeV. Fifty scintillation counters and a matrix coincidence system were used to identify incoming pions and detect the recoil proton and pion companions. Results were fitted with a power series in the cosine of the center-of-mass scattering angle, and total elastic cross sections were obtained by integrating under the fitted curves. The coefficients of the cosine series are displayed, plotted versus the laboratory kinetic energy of the pion. The most striking features of these curves are the large positive value of the coefficient of cos6θ*, and the large negative value of the coefficient of cos4θ*, both of which maximize in the vicinity of the 1350-MeV peak in the total cross section. These results indicate that the most predominant state contributing to the scattering at the 1350-MeV peak has total angular momentum J=72, since the coefficients for terms above cos6θ* are negligible at this energy. One possible explanation is that the 1350-MeV peak is the result of an F72 resonance lying on the same Regge-pole trajectory as the (32, 32) resonance near 195 MeV.

8 data tables match query

No description provided.

No description provided.

No description provided.

More…