The differential cross section for the reaction γ+p→π++n was measured at 32 laboratory photon energies between 589 and 1269 MeV at the Caltech synchrotron. At each energy, data have been obtained at typically 15π+ angles between 6° and 90° in the center-of-mass (c.m.) system. A magnetic spectrometer was used to detect the π+ photoproduced in a liquid-hydrogen target. Two Cerenkov counters were used to reject background of positrons and protons. The data clearly show the presence of a pole in the production amplitude due to one-pion exchange. Moravcsik fits to the angular distributions, including data from another experiment carried out by Thiessen, are presented. Extrapolation of these fits to the pole gives a value for the pion-nucleon coupling constant of 14.2±1.7, which is consistent with the accepted value. The "second" and "third" pion-nucleon resonances are evident as peaks in the total cross section and as changes in the shape of the angular distributions. At the third resonance, there is evidence for both a D52 and an F52 amplitude. The absence of large variations with energy in the 0° and 180° cross sections implies that the second and third resonances are mostly produced from an initial state with helicity 32.
No description provided.
No description provided.
No description provided.
An analysis of π−p two-prong interactions at 4.16 GeV/c is presented. The total two-prong cross section is 19.11±0.40 mb, based on 33 672 events. The elastic-scattering differential cross section shows an exponential behavior, Kexp(−AΔ2). With A=7.36±0.14 GeV−2, the "absorption parameters" are derived as C+=0.846±0.017 and γ+=0.040±0.001. The final-state π−π0p exhibits a strong ρ−, and the π−π+n a strong ρ0 and f0. The partial cross sections for the dominant resonant channels pρ−, π−Δ+(1236) (→pπ0), ρ0n, and f0n are 0.59±0.03, 0.17±0.01, 1.15±0.05, and 0.53±0.06 mb, respectively. The ρ− production and decay angular distributions do not agree with the predictions of the absorption-modified one-pion-exchange model. However, an inclusion of the contribution from ω exchange adequately accounts for the discrepancy. The ρ0 asymmetry is interpreted as a result of an interference of the resonant P wave and isospin-zero S wave, and the corresponding spin-density matrix elements are obtained. In the final state π−p+neutrals, a clear peak for the η meson and some evidence for the ω meson are seen.
Axis error includes +- 0.0/0.0 contribution (?////EVENT NORMALIZATION).
The cross section for the elastic scattering of positrons from protons has been compared with the corresponding electron cross section using secondary beams derived from the photon beam of the Cornell 2-GeV synchrotron. The paths of the scattered leptons (positrons or electrons) and recoil protons were recorded in spark chambers and were used to determine the incident lepton energy of each event. Elastic scatterings were identified by requiring coplanarity and a fit to the scattering kinematics. The detection system was sensitive to scattering angles between 25° and 75°. The ratio of the positron cross section to the corresponding electron cross section was 0.992±0.017 at 800 MeV and 0.987±0.019 at 1200 MeV. No significant variation of the ratio with angle of scattering was found.
No description provided.
No description provided.
The polarization of recoiling protons from the photoproduction of π0 mesons on liquid hydrogen has been measured for primary photon energies between 500 and 1000 MeV over a range of π0 c.m. angles from 55° to 130°. The results show structure not observed previously in experiments of less precision. In particular, the polarization at 90° c.m. is close to zero at a primary photon energy of 900 MeV. Also, a strong dependence of polarization on π0 c.m. angle between 600 and 900 MeV was observed. A subsidiary measurement of the polarization of the recoil protons from elastic e−p scattering at 900 MeV and q2=10 F−2 gave a value (1.3±2.0)%.
No description provided.
No description provided.
No description provided.
Total cross sections of K± and p¯ on hydrogen and deuterium were measured in a standard transmission experiment with statistical precisions of the order of 0.05-0.25%. Data were obtained in the momentum range 2.45-3.30 GeV/c for K−N, 1.55-3.30 GeV/c for K+N, and 1.00-3.30 GeV/c for p¯N. Cross sections for the pure isotopic spin states are obtained using a procedure for the deuterium data which takes into account Fermi motion and the shadow effect. Evidence for the following new structures was found: Y1*(2455), Y1*(2620), Y0*(2585), Z1*(2150), Z1*(2500), π1*(2290), π1*(2350), and π0*(2375).
?.
?.
?.
In a new measurement of proton total cross sections at 3.00 GeV/c, the p−d total cross section is found to be lower than a previous measurement by 1.17±0.09 mb. This implies a corresponding new value for the total cross section for I=0 which is 2.18±0.27 mb lower than the previous value. Possible sources of systematic error are discussed.
No description provided.
'1'. '2'. '3'. '5'.
No description provided.
The reaction K + p → K ∗o (892) Δ ++ (1236) has been studied at 3 GeV/ c in both a hydrogen and a deuterium bubble chamber experiment. The production mechanism is described by a Regge-type model using π- and B-exchange. The joint decay distributions are analysed in various frames and compared with quark-model predictions.
No description provided.
No description provided.
No description provided.
Forward differential cross sections for isospin-1 bosons produced in p+p→d+x+ were measured using a deuteron missing-mass spectrometer at a small angle between 4.0- and 12.3−GeVc incident momentum. Differential cross sections for π+ and ρ+ were extracted from the spectra using phase-space backgrounds. They range from 10.4 to 0.4 μb/sr for π+ and from 1.4 to 0.3 μb/sr for ρ+. A bump near 6 GeVc appears in both dπ and dρ channels. No clear evidence is seen for higher-mass bosons. The possible δ+ cross sections average less than 0.01 μb/sr.
TECHNIQUE USED...ELECTRONIC. TABLE 1.
TECHNIQUE USED...MISSING MASS. BREIT WIGNER USED WITH FIXED WIDTH (150 MEV) AND VARIABLE MASS (LATTER VARIED WITH MOMENTA FROM 715 TO 765 MEV). 6 PERCENT NORMALIZATION ERROR; 20 PERCENT FROM BREIT WIGNER FIT. TABLE 1.
TECHNIQUE USED...MISSING MASS. CROSS-SECTIONS CORRESPOND TO VERY NARROW DELTA (962).
As a partial result of an analysis of K + d interactions at 3 GeV/ c produced in the 81 cm Saclay bubble chamber, we present data on K + differential cross sections for the following reactions: K + d → K + d, K + d → K + pn, K + d → K 0 pp . A set of parameters describing the K + n elastic scattering has been obtained from a simulataneous fit, based on the Glauber model. to the three experimental differential cross sections and to the K + d total cross section, giving α n = 1.7 ± 0.5 GeV −2 for the slope α n of the differential cross section, and ρ n = −0.16 ± 0.3 for the ratio of the real to the imaginary part of the forward scattering amplitude. The D-wave function of the deuteron has been found to give a non-negligible contribution to the coherent reaction.
No description provided.
No description provided.
No description provided.
We have measured the differential cross section for small angle p−p scattering from 25 to 200 GeV incident energy and in the momentum transfer range 0.015<|t|<0.080 (GeVc)2. We find that the slope of the forward diffraction peak, b(s), increases with energy and can be fitted by the form b(s)=b0+2α′ lns, where b0=8.3±1.3 and α′=0.28±0.13 (GeVc)−2. Such dependence is compatible with the data existing both at higher and lower energies. We have also obtained the energy dependence of the p−p total cross section in the energy range from 48 to 196 GeV. Within our errors which are ± 1.1 mb the total cross section remains constant.
No description provided.
THE TOTAL CROSS SECTION IS NORMALIZED TO 38.5 +- 0.1 MB AT 48 GEV. IT HAS BEEN DERIVED USING THE OPTICAL THEOREM FROM THE EXTRAPOLATED FORWARD ELASTIC CROSS SECTION AND WITH ALPHA = -0.09.