Date

Subject_areas

Multi - Hadronic Events at E(c.m.) = 29-GeV and Predictions of QCD Models from E(c.m.) = 29-GeV to E(c.m.) = 93-GeV

Petersen, A. ; Abrams, G.S. ; Adolphsen, Chris ; et al.
Phys.Rev.D 37 (1988) 1, 1988.
Inspire Record 246184 DOI 10.17182/hepdata.4114

Multihadronic e+e− annihilation events at a center-of-mass energy of 29 GeV have been studied with both the original (PEP 5) Mark II and the upgraded Mark II detectors. Detector-corrected distributions from global shape analyses such as aplanarity, Q2-Q1, sphericity, thrust, minor value, oblateness, and jet masses, and inclusive charged-particle distributions including x, rapidity, p⊥, and particle flow are presented. These distributions are compared with predictions from various multihadron event models which use leading-logarithmic shower evolution or QCD matrix elements at the parton level and string or cluster fragmentation for hadronization. The new generation of parton-shower models gives, on the average, a better description of the data than the previous parton-shower models. The energy behavior of these models is compared to existing e+e− data. The predictions of the models at a center-of-mass energy of 93 GeV, roughly the expected mass of the Z0, are also presented.

0 data tables match query

Charged particle momentum spectra in e+ e- annihilation at s**(1/2) = 192-GeV - 209-GeV.

The OPAL collaboration Abbiendi, G. ; Ainsley, C. ; Akesson, P.F. ; et al.
Eur.Phys.J.C 27 (2003) 467-481, 2003.
Inspire Record 595335 DOI 10.17182/hepdata.48893

Charged particle momentum distributions are studied in the reaction e+e- -> hadrons, using data collected with the OPAL detector at centre-of-mass energies from 192 GeV to 209 GeV. The data correspond to an average centre-of- mass energy of 201.7 GeV and a total integrated luminosity of 433 pb-1. The measured distributions and derived quantities, in combination with corresponding results obtained at lower centre-of-mass energies, are compared to QCD predictions in various theoretical approaches to study the energy dependence of the strong interaction and to test QCD as the theory describing it. In general, a good agreement is found between the measurements and the corresponding QCD predictions.

0 data tables match query

Comparison of e+ e- Annihilation with QCD and Determination of the Strong Coupling Constant

The TASSO collaboration Brandelik, R. ; Braunschweig, W. ; Gather, K. ; et al.
Phys.Lett.B 94 (1980) 437-443, 1980.
Inspire Record 153511 DOI 10.17182/hepdata.5489

We have analyzed 1113 events of the reaction e + e − → hadrons at CM energies of 12 and 30 GeV in order to make a detailed comparison with QCD. Perturbative effects can be well separated from effects depending on the quark and gluon fragmentation parameters to yield a reliable measurement of the coupling constant α S . At 30 GeV, the result is α S = 0.17 ± 0.02 (statistical) ± 0.03 (systematic). QCD model predictions, using the fragmentation parameters determined along with α S , agree with both gross properties of the final states and with detailed features of the three-jet states.

0 data tables match query

Rapid Growth of Charged Particle Multiplicity in High-Energy e+ e- Annihilations

The TASSO collaboration Brandelik, R. ; Braunschweig, W. ; Gather, K. ; et al.
Phys.Lett.B 89 (1980) 418-422, 1980.
Inspire Record 143691 DOI 10.17182/hepdata.27273

Hadron production by e + e − annihilation has been studied for c.m. energies W between 13 and 31.6 GeV. As a function of 1n W the charged particle multiplicity grows faster at high energy than at lower energies. This is correlated with a rise in the plateau of the rapidity distribution. The cross section s d σ /d x is found to scale within ±30% for x > 0.2 and 5 ⩽ W ⩽ 31.6 GeV.

0 data tables match query

Properties of Hadron Final States in e+ e- Annihilation at 13-GeV and 17-GeV Center-Of-Mass Energies

The TASSO collaboration Brandelik, R. ; Braunschweig, W. ; Gather, K. ; et al.
Phys.Lett.B 83 (1979) 261-266, 1979.
Inspire Record 140303 DOI 10.17182/hepdata.27352

We have observed e + e − hadrons at C.M. energies of 13 GeV and 17 GeV at PETRA using the TASSO detector. We find R (13 GeV) = 5.6 ± 0.7 and R (17 GeV) = 4.0 ± 0.7. The additional systematic uncertainty is 20%. Comparing inclusive charged hadron spectra we observe scaling between 5 GeV and 17 GeV for x = p / p beam > 0.2; however the 13 GeV cross section is above the 17 GeV cross section for smaller x . This may be due to copious bb̄ production. The events become increasingly jet like at high energies as evidenced by a shrinking sphericity distribution with increasing energy.

0 data tables match query

A Measurement of K*+- (892) production in hadronic Z0 decays

The OPAL collaboration Acton, P.D. ; Alexander, G. ; Allison, John ; et al.
Phys.Lett.B 305 (1993) 407-414, 1993.
Inspire Record 342766 DOI 10.17182/hepdata.28930

Measurements are presented of the inclusive cross section for K ∗ (892) ± production in hadronic decays of the Z 0 using a sample of about half a million events recorded with the OPAL experiment at LEP. Charged K ∗ mesons are reconstructed in the decay channel K 0 S π ± . A mean rate of 0.72±0.02±0.08 K ∗ mesons per hadronic event is found. Comparison of the results with predictions of the JETSET and HERWIG models shows that JETSET overestimates the K ∗± production cross section while HERWIG is consistent with the data.

0 data tables match query

Study of Quark Fragmentation at 29-GeV: Global Jet Parameters and Single Particle Distributions

Bender, D. ; Derrick, M. ; Fernandez, E. ; et al.
Phys.Rev.D 31 (1985) 1, 1985.
Inspire Record 201482 DOI 10.17182/hepdata.23581

In this paper, results are presented from a study of the hadronic final states in e+e− annihilation at 29 GeV. The data were obtained with the High Resolution Spectrometer (HRS) at the SLAC PEP e+e− colliding-beam facility. The results are based on 6342 selected events corresponding to an integrated luminosity of 19.6 pb−1. The distributions of the events in sphericity (S), thrust (T), and aplanarity (A) are given and compared to other e+e− data in the same energy range. We measure 〈S〉=0.130±0.003±0.010 and 〈1-T〉=0.100±0.002. The sphericity distribution is compared to sphericity measurements made for beam jets in hadronic collisions as well as jets studied in neutrino scattering. The data sample is further reduced to 4371 events with the two-jet selections, S≤0.25 and A≤0.1. The single-particle distributions in the longitudinal and transverse directions are given. For low values of the momentum fraction (z=2p/W), the invariant distribution shows a maximum at z∼0.06, consistent with a QCD expectation. The data at high Feynman x (xF) show distribution consistent with being dominated by a (1-xf)2 variation for the leading quark-meson transition. The rapidity distribution shows a shallow central minimum with a height (1/NevdNh/dY‖Y=0=2.3±0.02±0.07. The mean charged multiplicity is measured to be 〈nch〉=13.1±0.05±0.6. The mean transverse momentum relative to the thrust axis 〈pT〉 rises as a function of z to a value of 0.70±0.02 GeV/c for z≳0.3. The distributions are compared to those measured in other reactions.

0 data tables match query

Spin alignment of leading K*(892)0 mesons in hadronic Z0 decays.

The OPAL collaboration Ackerstaff, K. ; Alexander, G. ; Allison, John ; et al.
Phys.Lett.B 412 (1997) 210-224, 1997.
Inspire Record 447146 DOI 10.17182/hepdata.47440

Helicity density matrix elements for inclusive K*(892)^0 mesons from hadronic Z^0 decays have been measured over the full range of K^*0 momentum using data taken with the OPAL experiment at LEP. A preference for occupation of the helicity zero state is observed at all scaled momentum x_p values above 0.3, with the matrix element rho_00 rising to 0.66 +/- 0.11 for x_p > 0.7. The values of the real part of the off-diagonal element rho_1-1 are negative at large x_p, with a weighted average value of -0.09 +/- 0.03 for x_p > 0.3, in agreement with new theoretical predictions based on Standard Model parameters and coherent fragmentation of the qq(bar) system from the Z^0 decay. All other helicity density matrix elements measured are consistent with zero over the entire x_p range. The K^*0 fragmentation function has also been measured and the total rate determined to be 0.74 +/- 0.02 +/- 0.02 K*(892)^0 mesons per hadronic Z^0 decay.

0 data tables match query

The Production of neutral kaons in Z0 decays and their Bose-Einstein correlations

The OPAL collaboration Akers, R. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 67 (1995) 389-402, 1995.
Inspire Record 393503 DOI 10.17182/hepdata.48008

The production of neutral kaons in e+e− annihilation at centre-of-mass energies in the region of the Z0 mass and their Bose-Einstein correlations are investigated with the OPAL detector at LEP. A total of about 1.26×106 Z0 hadronic decay events are used in the analysis. The production rate of K0 mesons is found to be 1.99±0.01±0.04 per hadronic event, where the first error is statistical and the second systematic. Both the rate and the differential cross section for K0 production are compared to the predictions of Monte Carlo generators. This comparison indicates that the fragmentation is too soft in bothJetset andHerwig. Bose-Einstein correlations in Ks0Ks0 pairs are measured through the quantityQ, the four momentum difference of the pair. A threshold enhancement is observed in Ks0Ks0 pairs originating from a mixed sample of\(K^0 \bar K^0\) and K0K0 (\(\bar K^0 \bar K^0\)) pairs. For the strength of the effect and for the radius of the emitting source we find values of λ=1.14±0.23±0.32 andR0=(0.76±0.10±0.11) fm respectively. The first error is statistical and the second systematic.

0 data tables match query

QCD studies with e+ e- annihilation data at 161-GeV.

The OPAL collaboration Ackerstaff, K. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 75 (1997) 193-207, 1997.
Inspire Record 440721 DOI 10.17182/hepdata.47487

We have studied hadronic events produced at LEP at a centre-of-mass energy of 161 GeV. We present distributions of event shape variables, jet rates, charged particle momentum spectra and multiplicities. We determine the strong coupling strength to be αs(161 GeV) = 0.101±0.005(stat.)±0.007(syst.), the mean charged particle multiplicity to be 〈nch〉(161 GeV) = 24.46 ± 0.45(stat.) ± 0.44(syst.) and the position of the peak in the ξp = ln(1/xp) distribution to be ξ0(161 GeV) = 4.00 ±0.03(stat.)±0.04(syst.). These results are compared to data taken at lower centre-of-mass energies and to analytic QCD or Monte Carlo predictions. Our measured value of αs(161 GeV) is consistent with other measurements of αs. Within the current statistical and systematic uncertainties, the PYTHIA, HERWIG and ARIADNE QCD Monte Carlo models and analytic calculations are in overall agreement with our measurements. The COJETS QCD Monte Carlo is in general agreement with the data for momentum weighted distributions like Thrust, but predicts a significantly larger charged particle multiplicity than is observed experimentally.

0 data tables match query