None
FRAGT IS CHARGE BARYON WITH PATH < 4 CM.
FRAGT IS CHARGE BARYON WITH PATH < 4 CM.
FRAGT IS CHARGE BARYON WITH PATH < 4 CM.
We measure an inclusive branching fraction of (13.9 ± 2.0−2.2+1.9)% for the decay τ−→ντπ−π0+nh0(n>~1), where h0 is a π0 or an η. The data sample, obtained with the time-projection-chamber detector facility at the SLAC e+e− storage ring PEP, corresponds to an integrated luminosity of 72 pb−1 at 29 GeV center-of-mass energy. The measured branching fraction is somewhat greater than the theoretical prediction and, with errors taken into account, could resolve the present difference between the inclusive and the sum of the exclusive τ± branching fractions into one charged prong.
No description provided.
No description provided.
High statistics data for the reaction K − p→K − π + n at 11 GeV / c have been obtained in the LASS spectrometer at SLAC. A spherical harmonic moments analysis provides clear evidence for the production of the complete leading orbitally excited K ∗ series up through J P = 5 − . New measurements are made of the masses and widths of the 1 − K ∗ (892), 2 + K ∗ (1430 ), 3 − K ∗ (1780), and 4 + K ∗ (2060), and evidence is presented for the production of a new K ∗ state at 2382 MeV / c 2 with spin-parity 5 − .
Unnormalised acceptance corrected spherical moments.
Correlation matrices.
Correlation matrices.
None
No description provided.
High-precision measurements of electron-positron annihilation into final states of two, three, and four photons are presented. The data were obtained with the MAC detector at the PEP storage ring of the Stanford Linear Accelerator Center, at a center-of-mass energy of 29 GeV. The measured e+e−→γγ differential cross section is used to test the validity of quantum electrodynamics (QED) in this energy range; it agrees well with QED, and the limit on cutoff parameters for the electron propagator is Λ>66 GeV. The measurement of e+e−→γγγ is used to test the QED calculations of order α3 and to search for anomalies that would indicate the existence of new particles; the agreement with QED is excellent and no anomalies are found. Two events from the reaction e+e−→γγγγ are found, in agreement with the QED prediction.
Errors are combined statistical and systematics.
No description provided.
Two 4gamma events are observed corresponding to a cross section of 0.02 PB.
This paper reports measurements of the differential cross sections for the reactions e+e−→e+e− (Bhabha scattering) and e+e−→γγ (γ-pair production). The reactions are studied at a center-of-mass energy of 29 GeV and in the polar-angular region ‖costheta‖<0.55. A direct cross-section comparison between these two reactions provides a sensitive test of the predictions of quantum electrodynamics (QED) to order α3. When the ratio of γ-pair to Bhabha experimental cross sections, integrated over ‖costheta‖<0.55, is divided by the same ratio predicted from α3 QED theory, the result is 1.007±0.009±0.008. The 95%-confidence limits on the QED-cutoff parameters are Λ+>154 GeV and Λ−>220 GeV for Bhabha scattering, and Λ+>59 GeV and Λ−>59 GeV for γ-pair production.
No description provided.
The inclusive production of η-mesons in pp collisions at √ s =63GeV and ϑ CM =90° has been measured for p T <1.5GeV/c. The η/π ratio decreases from its previously measured asymptotic value of η/π ∼ 0.5 at high transverse momentum, to η/π ≈0.3 at P T = 750MeV/c and η/π ≈ 0.01 at P T =300MeV/c, in a way that consistent with phase-space considerations, e.g. m T scaling. The η/π ratio, integrated from 0.2–1.5 GeV/ c , is found to be η/π=0.07±0.055.
No description provided.
Angular distributions of high-mass jet pairs (180< m 2 J <350 GeV) have been measured in the UA1 experiment at the CERN pp̄ Collider ( s =630 GeV ) . We show that angular distributions are independent of the subprocess centre-of-mass (CM) energy over this range, and use the data to put constraints on the definition of the Q 2 scale. The distribution for the very high mass jet pairs (240< m 2 J <300 GeV) has also been used to obtain a lower limit on the energy scale Λ c of compositeness of quarks. We find Λ c >415 GeV at 95% confidence level.
No description provided.
No description provided.
We compare the particle flow in the event plane of three-jet qq¯g (quark-antiquark-gluon) events with the particle flow in radiative annihilation events qq¯γ (quark-antiquark-photon) for similar kinematic configurations. In the angular region between quark and antiquark jet, we find a significant decrease in particle density for qq¯g as compared to qq¯γ. This effect is predicted in QCD as a result of destructive interference between soft-gluon radiation from quark, antiquark, and hard gluon.
No description provided.
No description provided.
None
NUCLEUS IS C6J.
NUCLEUS IS C6J.
NUCLEUS IS C6J.