Using the ARGUS detector at the e + e − storage ring DORIS II at DESY, we have observed production of the charmed-strange baryon Ξ c + and its neutral isospin partner, the Ξ c 0 . The Ξ c + was reconstructed in the final state Ξ − π + π + , while the Ξ c 0 was seen in decay to Ξ − π + and Ξ − π + π + π − . The average Ξ c fragmentation spectrum has been determined, as well as the production cross section times branching ratio for each decay mode. The charged and neutral masses were measured to be 2465.1 ± 3.6 ± 1.9 MeV/ c 2 and 2472.1 ± 2.7 ± 1.6 MeV/ c 2 respectively, corresponding to a mass-splitting, M ( Ξ c + ) − M ( Ξ c 0 ), of −7.0±4.5±2.2 MeV/ c 2 .
Cross sections times branching ratios for $\Xi_c^0$ and $\Xi_c^+$ production at $E_{\mathrm{cms}} = 10.5$ GeV and $x_p > 0.5$.
Cross sections times branching ratios for $\Xi_c^0$ and $\Xi_c^+$ production at $E_{\mathrm{cms}} = 10.5$ GeV and all $x_p$.
Data requested from authors.
The relative production ratio of 3-jet events to the total number of hadronic events was studied in e + e − annihilations at centre-of-mass energies between 54 and 61.4 GeV. The QCD scale parameter has been determined to be Λ MS =254 −47 +55 ±56 MeV on the basis of a QCD cascade with the next-to-leading logarithmic approximation.
Data are uncorrected for initial radiation, detector effects, and quark hadronization.
LAMBDA-MSBAR determined from the 3-jet ratio.
None
Ratio per multihadron event for continuum data.
Ratio per multihadron event for continuum data.
Ratio per multihadron event for continuum data.
We present measurements of global event shape distributions in the hadronic decays of theZ0. The data sample, corresponding to an integrated luminosity of about 1.3 pb−1, was collected with the OPAL detector at LEP. Most of the experimental distributions we present are unfolded for the finite acceptance and resolution of the OPAL detector. Through comparison with our unfolded data, we tune the parameter values of several Monte Carlo computer programs which simulate perturbative QCD and the hadronization of partons. Jetset version 7.2, Herwig version 3.4 and Ariadne version 3.1 all provide good descriptions of the experimental distributions. They in addition describe lower energy data with the parameter values adjusted at theZ0 energy. A complete second order matrix element Monte Carlo program with a modified perturbation scale is also compared to our 91 GeV data and its parameter values are adjusted. We obtained an unfolded value for the mean charged multiplicity of 21.28±0.04±0.84, where the first error is statistical and the second is systematic.
Corrected Thrust distribution.
Corrected Major distribution.
Corrected Minor distribution.
The charged-particle fractional momentum distribution within jets, D(z), has been measured in dijet events from 1.8-TeV p¯p collisions in the Collider Detector at Fermilab. As expected from scale breaking in quantum chromodynamics, the fragmentation function D(z) falls more steeply as dijet invariant mass increases from 60 to 200 GeV/c2. The average fraction of the jet momentum carried by charged particles is 0.65±0.02(stat)±0.08(syst).
No description provided.
The transverse momentum distributions ofW andZ bosons produced in\(\bar pp\) collisions at\(\sqrt s= 630 GeV\) are examined. Comparisons are made with QCD predictions, and good agreement is found. The fraction ofW bosons produced withpT>25 GeV is found to be 3.8±0.6(stat)−1.3+0.9(syst)%.
No description provided.
Combining the cross section for pbar p --> W X * BR(W --> E NU) given in Alitti et al, ZP C47 (90) 11. (660 +- 15 (DSYS=37) pb).
None
No description provided.
No description provided.
PT(P=3,NAME=OUT)**2 - MEAN SQUARE OF THE PROJECTION OF THE ASSOCIATED PARTICLE TRANSVERSE MOMENTUM ONTO THE NORMAL TO THE TRIGGER PARTICLE PRODUCTION PLANE.
We have measured the cross section for production of ψ and ψ′ in p¯ and π− interactions with Be, Cu, and W targets in experiment E537 at Fermilab. The measurements were performed at 125 GeV/c using a forward dimuon spectrometer in a closed geometry configuration. The gluon structure functions of the p¯ and π− have been extracted from the measured dσdxF spectra of the produced ψ's. From the p¯W data we obtain, for p¯, xG(x)=(2.15±0.7)[1−x](6.83±0.5)[1+(5.85±0.95)x]. In the π− case, we obtain, from the W and the Be data separately, xG(x)=(1.49±0.03)[1−x](1.98±0.06) (for π−W), xG(x)=(1.10±0.10)[1−x](1.20±0.20) (for π−Be).
No description provided.
No description provided.
No description provided.
We present the charged-particle multiplicity distributions for e+e− annihilation at center-of-mass energies from 50 to 61.4 GeV. The results are based on a data sample corresponding to a total integrated luminosity of 30 pb−1 obtained with the AMY detector at the KEK storage ring TRISTAN. The charged-particle multiplicity distributions deviate significantly from the modified Poisson and pair Poisson distributions, but follow Koba-Nielsen-Olesen scaling and are well reproduced by the LUND parton-shower model.
Fully corrected charged particle multiplicity distributions. Errors for n=2 and 4 are systematic only since these were derived using the LUND 6.3 Monte Carlo normalized to the observations at higher n values.
No description provided.
The reactionγγ→π+π−π+π− has been studied with the ARGUS detector. The rate in the invariant mass region below 1.8 GeV/c2 is found to be largely due toρ0ρ0 production. A spin-parity analysis shows a dominance of the partial wave (JP,Jz)=(2+, 2) with a small admixture fromJP=0+. The contribution of negative parity states is consistent with zero. The large ratio of cross sectionsσ(γγ→ρ0ρ0)/σ(γγ→ρ+ρ−)≃4, and the dominance of theJP=2+ wave in the reactionγγ→ρ0ρ0 is a signature consistent with the production of an exotic (I=2) resonance.
No description provided.
Statistical errors only.. Cross-section assuming phase-space distribution, as obtained by a 7 parameter fit.
Statistical errors only.. Cross-section assuming phase-space distribution, as obtained by a 7 parameter fit.