We present complete results concerning the five reactions K − p → Λω , K − p → Λφ , K − p → Σ 0 ϱ and K − p → Σ 0 φ . The experimental data are well described by exchange mechanisms and the agreement with the SU(3) symmetry predictions is excellent.
FORWARD AND BACKWARD CROSS SECTIONS ARE FOR COS(THETA) > AND < 0. SLOPE DETERMINED FOR -TP = 0.2 TO 1.0.
AUTHORS ALSO GIVE CORRELATIONS OF LAMBDA POLARIZATION WITH THE MESON POLARIZATION.
No description provided.
We have measured the cross sections for these reactions and the cross sections of resonances produced in them. The production of Y ∗± (1385) , ϱ o (765), and f o (1260) is observed in the first reaction; ϱ o (765) in the second; Y ∗−,o (1385), ω o (748), B − (1235), probably ϱ o,− (765), and an enhancement we interpret to be the J P = 1 2 − Σ o (1750) in the third. Single particle longitudinal momentum distributions and average values of transverse momentum are presented. The observed single particle production angular distributions show good qualitative but not quantitative agreement with the Reggeized multiperipheral model of Chan, Loskiewicz, and Allison. We found strong disagreement between the amounts of observed resonance production and the results of the multiperipheral model of Plahte and Roberts that is based on the models of Chan et al. and Veneziano. However, we included isospin effects only in an approximate manner.
No description provided.
Resonance production in the above reactions containing a proton in the final state is characterized primarily by the production of K ∗− (890). The events with a final state neutron are characterized by the production of either K ∗− (890) or Δ − (1236), but very little double resonance production. Cross sections are presented. Exponential slopes for the momentum-transfer distributions of the K ∗− (890) and Δ − (1236) were determined and found to be much smaller than for elastic scattering. For the π − π − p K 0 events the spin density matrix elements for the decay of the K ∗− (890) in the Jackson frame imply alignment. Single particle longitudinal momentum distributions and average values of transverse momentum are presented. The single particle production angular distributions of all three reactions were compared with the results of the Reggeized multiperipheral model of Chan, Loskiewicz, and Allison (CLA) modified to include resonance production. Good qualitative agreement was found. The data from the π − π − p K 0 events were also compared with a multiperipheral model of Plahte and Roberts that is based on the CLA and Veneziano models.
No description provided.
The non-strange four-prong events of π + p interactions at 3.5 GeV/ c are studied. Cross sections are calculated for all resonance productions in the channels π + p → p π + π + π − ( σ T = 3.18 ± 0.13 mb) and π + p → p π + π + π − π o ( σ T = 4.03 ± 0.16 mb). The dominant two body reactions Δ ++ ϱ o and Δ ++ ω o are investigated in detail, and production and decay distributions are presented as well as joint decay density matrix elements and joint correlation terms. The Δ ++ ϱ o reaction is compared to predictions of OPE with absorption and the Δ ++ ω o is compared to rho-exchange with sharp cutoff.
FOUR-PRONG, NON-STRANGE CROSS SECTIONS. SYSTEMATIC ERROR INCLUDED.
BREIT-WIGNER RESONANCE FITS, ALLOWING FOR PHASE SPACE AND RELEVANT REFLECTIONS, TO <P PI+ PI+ PI-> FINAL STATE.
BREIT-WIGNER RESONANCE FITS, ALLOWING FOR PHASE SPACE AND RELEVANT REFLECTIONS, TO <P PI+ PI+ PI- PI0> FINAL STATE.
Final states π − Σ + , π + Σ − , π o Λ and ηΛ were studied for K − p reactions at 3.95 GeV/ c . Cross sections, angular distributions and polarizations are presented. Data for π − Σ + and π o Λ production are compared to the line-reversed πp reactions at the same beam momentum. Baryon-exchange peaks are presented for the Σ + π − , Σ − π + and Λπ o final states.
No description provided.
No description provided.
No description provided.
Differential cross sections and density matrix elements are presented for K ∗− (890) and K ∗− (1400) produced in the reaction K − p→K O π − p at 3.95 GeV/ c . The cross sections are decomposed into contributions due to different exchange mechanisms.
No description provided.
No description provided.
No description provided.
The spin rotation parameter R has been measured at CERN, for π ± p at 6 GeV c and for π − p at 16 GeV c , with t ranging from −0.19 to −0.51 ( GeV c ) 2 . The parameter A was measured for π − p at 6 GeV c in the interval between t =−0.19 and minus;0.41 ( GeV c ) 2 . The averaged values are the following; R (+6) =−0.08±0.04, R (−6) =−0.23±0.05 and R (−16) =−0.23±0.05. The values obtained for A are close to +1.
No description provided.
No description provided.
No description provided.
Multihadronic production has been observed at the Adone e + e − storage ring, in the c.m. energy range 1.4 - 2.4 GeV. The cross sections for the reactions e + + e − → 2 π ± + nπ o (1 ⩽ n ⩽ 4) and e + + e − → (4 π ± + nπ ± ) (0 ⩽ n ⩽ 2) have been measured, assuming that the produced particles are only pions with a pure phase space momentum distribution.
No description provided.
Differential cross sections for single photoproduction of neutral pion on neutron have been measured at different c.m. angles for photon energies, between 450–800 MeV.
No description provided.
No description provided.
No description provided.
The elastic scattering of K ± mesons on protons has been studied at 5 GeV/c. A total of about 500 000 events have been measured in the c.m. angular range 17° < θ cm < 165° corresponding to 0.2 < − t < (GeV/ c ) 2 . We observed a K − p backward peak which we have parametrized as d σ /d u = (0.6 ± 0.2) exp [(3.3 ± 0.6) u ] μb /(GeV/c) 2 , while for the K + p backward peak we find d σ /d u = (17.5 ± 1) exp [(3.6 ± 0.2) u ] μb /(GeV/c) 2 . The K − p cross-section falls to about 0.03 μ b ( GeV /c) 2 around − t = 5 (GeV/ c ) 2 , while the K + p cross-section stays in the vicinity of 0.3 μ b ( GeV /c) 2 in the same t -region. The K + p and K − p differential cross-sections have cross-over points at − t = 0.2, 1.1 and about 3.5 (GeV/ c ) 2 .
No description provided.
No description provided.