The inclusive ϱ ° production cross section has been measured in the reaction π − p → π + π − X at 205 GeV/ c . We find σ ( ϱ ° ) = 13.5 ± 3.4 mb, with most of the production occuring in the central region. Assuming σ ( ϱ + ) ≈ σ ( ϱ − ) ≈ σ ( ϱ ° ), it is concluded that approximately one-third of the pions at this energy come from ϱ -decay.
No description provided.
No description provided.
No description provided.
The reactions e+e−→e+e− and e+e−→μ+μ− have been measured at center-of-mass energies 3.0, 3.8, and 4.8 GeV and production angles of 50°<θ<130° over all azimuthal angles. Agreement with quantum electrodynamics is excellent. New limits for cutoff parameters in quantum-electrodynamic-breakdown models are given.
No description provided.
No description provided.
We have observed a very sharp peak in the cross section for e+e−→hadrons, e+e−, and possibly μ+μ− at a center-of-mass energy of 3.105±0.003 GeV. The upper limit to the full width at half-maximum is 1.3 MeV.
No description provided.
In a 48 000-picture exposure of the Fermilab 30-inch hydrogen bubble chamber to a 205 GeV/ c π − beam, we have measured 169 events of the reaction, π − p → π − π + π − p, with a cross section of 635 ± 61 μ b. This reaction proceeds almost entirely via low mass π − → 3 π and p → p ππ dissociation. Factorization is satisfied for p → pππ dissociation in πp and pp interactions.
No description provided.
The π − p→K 0 λ polarization has been measured at 5 GeV/ c in the range 0<− t <1.4 (GeV/ c ) 2 . The polarization is small for − t ⪅0.4 (GeV/ c ) 2 , becoming negative at the higher values of − t .
No description provided.
Cross sections, differential cross sections, density matrix elements and statistical tensors are given for the reactions π + p → ( ϱ 0 , ω ) Δ ++ at 13.2 GeV/ c . A discussion of the results in terms of particle exchanges, quark model or dipole coupling constraints, and the equal phase hypothesis is presented in some detail for the high statistics ϱ 0 Δ ++ channel.
BREIT-WIGNER FITS WHICH CORRECT FOR RESONANCE TAILS AND BACKGROUNDS.
No description provided.
JACKSON FRAME DENSITY MATRIX ELEMENTS.
The missing mass spectrum opposite the proton in a 750 000 picture exposure, 13 GeV/ c π + p bubble chamber experiment, is investigated in two and four pion channels for structures observed or denied by boson spectrometers at the same energy in the reaction π − p→X − p.
BREIT-WIGNER FITS.
FOR 1.6 < M(4PI) < 1.8 GEV.
A recent spin-parity analysis of the π + π + π − system formed opposite a proton and a coherent deuteron by incident 13 GeV/ c 2 π + mesons, is extended to a three-pion mass of 1.9 GeV/ c . Relative proportions of the contributing partial waves are presented, from threshold, and the A 3 region is discussed in detail. Contrary to results with the (3 π ) − system, a change in phase is noted for the 2 − amplitude decaying to f 0 π + via am S-wave.
FOR A3+ DEFINED AS 2+ S-WAVE WITH 1.5 < M(3PI) < 1.8 GEV).
CONSTRAINT IMPLIES RHO(11) + RHO(1-1) = 0.
CONSTRAINT IMPLIES RHO(11) + RHO(1-1) = 0.
A spin and parity decomposition is presented of the (π+π+π−) final state formed opposite a proton by incident 13-GeV/c π+ mesons. The A3 enhancement is identified as the 2− amplitude decaying to f0π+ via an S wave. A change in relative phase is noted between the 2−S amplitude and the other principal contributions; this is not incompatible with analyses of the (3π)− system. The method employs the University of Illinois three-body partialwave analysis program.
A3+ DEFINED AS JP=2- S-WAVE.
The K − p → K 0 n polarization has been measured at 8 GeV/ c and for − t values ranging from 0 up tp 1.2 (GeV/ c ) 2 . A negative polarization has been found.
No description provided.