None
Using a data sample collected with the CLEO II detector at CESR, we have searched for dipion transitions between pairs of $\Upsilon$ resonances at energies near the $\Upsilon(4S)$. We obtain upper limits $B(\Upsilon(4S)\to \Upsilon(2S)\pi^+\pi^-) < 3.9 \times 10^{-4}$ and $B(\Upsilon(4S)\to \Upsilon(1S)\pi^+\pi^-) < 1.2 \times 10^{-4}$. We also observe the transitions $\Upsilon(3S)\to \Upsilon(1S)$, $\Upsilon(3S)\to \Upsilon(2S)$, and $\Upsilon(2S)\to \Upsilon(1S)$, from which we measure the cross-sections for the radiative processes $e^+e^- \to \Upsilon(3S)\gamma$ and $e^+e^- \to \Upsilon(2S)\gamma$.
Based on a data sample of 10 billion $J/\psi$ events collected with the BESIII detector, improved measurements of the Dalitz decays $\eta/\eta'\rightarrow\gamma e^+e^-$ are performed, where the $\eta$ and $\eta'$ are produced through the radiative decays $J/\psi\rightarrow\gamma \eta/\eta'$. The branching fractions of $\eta\rightarrow\gamma e^+e^-$ and $\eta'\rightarrow\gamma e^+e^-$ are measured to be $(7.07 \pm 0.05 \pm 0.23)\times10^{-3}$ and $(4.83\pm0.07\pm0.14)\times10^{-4}$, respectively. Within the single pole model, the parameter of electromagnetic transition form factor for $\eta\rightarrow\gamma e^+e^-$ is determined to be $\Lambda_{\eta}=(0.749 \pm 0.027 \pm 0.007)~ {\rm GeV}/c^{2}$. Within the multi-pole model, we extract the electromagnetic transition form factors for $\eta'\rightarrow\gamma e^+e^-$ to be $\Lambda_{\eta'} = (0.802 \pm 0.007\pm 0.008)~ {\rm GeV}/c^{2}$ and $\gamma_{\eta'} = (0.113\pm0.010\pm0.002)~ {\rm GeV}/c^{2}$. The results are consistent with both theoretical predictions and previous measurements. The characteristic sizes of the interaction regions for the $\eta$ and $\eta'$ are calculated to be $(0.645 \pm 0.023 \pm 0.007 )~ {\rm fm}$ and $(0.596 \pm 0.005 \pm 0.006)~ {\rm fm}$, respectively. In addition, we search for the dark photon in $\eta/\eta^\prime\rightarrow\gamma e^{+}e^{-}$, and the upper limits of the branching fractions as a function of the dark photon are given at 90% confidence level.
The process e+e- --> pi+ pi- pi0 gamma has been studied at a center-of-mass energy near the Y(4S) resonance using a 89.3 fb-1 data sample collected with the BaBar detector at the PEP-II collider. From the measured 3pi mass spectrum we have obtained the products of branching fractions for the omega and phi mesons, B(omega --> e+e-)B(omega --> 3pi)=(6.70 +/- 0.06 +/- 0.27)10-5 and B(phi --> e+e-)B(phi --> 3pi)=(4.30 +/- 0.08 +/- 0.21)10-5, and evaluated the e+e- --> pi+ pi- pi0 cross section for the e+e- center-of-mass energy range 1.05 to 3.00 GeV. About 900 e+e- --> J/psi gamma --> pi+ pi- pi0 gamma events have been selected and the branching fraction B(J/psi --> pi+ pi- pi0)=(2.18 +/- 0.19)% has been measured.
We report measurement of the cross section of $e^+e^-\to \pi^+\pi^-\psi(2S)$ between 4.0 and $5.5 {\rm GeV}$, based on an analysis of initial state radiation events in a $980 \rm fb^{-1}$ data sample recorded with the Belle detector. The properties of the $Y(4360)$ and $Y(4660)$ states are determined. Fitting the mass spectrum of $\pi^+\pi^-\psi(2S)$ with two coherent Breit-Wigner functions, we find two solutions with identical mass and width but different couplings to electron-positron pairs: $M_{Y(4360)} = (4347\pm 6\pm 3) {\rm MeV}/c^2$, $\Gamma_{Y(4360)} = (103\pm 9\pm 5) {\rm MeV}$, $M_{Y(4660)} = (4652\pm10\pm 8) {\rm MeV}/c^2$, $\Gamma_{Y(4660)} = (68\pm 11\pm 1) \rm MeV$; and ${\cal{B}}[Y(4360)\to \pi^+\pi^-\psi(2S)]\cdot \Gamma_{Y(4360)}^{e^+e^-} = (10.9\pm 0.6\pm 0.7) \rm eV$ and ${\cal{B}}[Y(4660)\to \pi^+\pi^-\psi(2S)]\cdot \Gamma_{Y(4660)}^{e^+e^-} = (8.1\pm 1.1\pm 0.5) \rm eV$ for one solution; or ${\cal{B}}[Y(4360)\to \pi^+\pi^-\psi(2S)]\cdot \Gamma_{Y(4360)}^{e^+e^-} = (9.2\pm 0.6\pm 0.6) \rm eV$ and ${\cal{B}}[Y(4660)\to \pi^+\pi^-\psi(2S)]\cdot \Gamma_{Y(4660)}^{e^+e^-} = (2.0\pm 0.3\pm 0.2) \rm eV$ for the other. Here, the first errors are statistical and the second systematic. Evidence for a charged charmoniumlike structure at $4.05 {\rm GeV}/c^2$ is observed in the $\pi^{\pm}\psi(2S)$ intermediate state in the $Y(4360)$ decays.
We measure the ratio of cross section times branching fraction, $R_p \equiv \sigma_{\chi_{c2}} {\cal B}(\chi_{c2} \to J/\psi \gamma)/ \sigma_{\chi_{c1}} {\cal B}(\chi_{c1} \to J/\psi \gamma)$, in 1.1 fb$^{-1}$ of $p\bar{p}$ collisions at $\sqrt{s} =$ 1.96 TeV. This measurement covers the kinematic range $p_T(J/\psi)>4.0$ GeV/$c$, $|\eta(J/\psi)| < 1.0$, and $p_T(\gamma)>1.0$ GeV/$c$. For events due to prompt processes, we find $R_p = 0.395\pm0.016(stat.)\pm0.015(sys.)$. This result represents a significant improvement in precision over previous measurements of prompt $\chi_{c1,2}$ hadroproduction.
Using data collected with the Belle detector at the KEKB asymmetric-energy $e^+e^-$ collider, we measure the energy dependence of the $e^+e^- \to h_b(nP)\pi^+\pi^-$ $(n=1,2)$ cross sections from thresholds up to $11.02\,$GeV. We find clear $\Upsilon(10860)$ and $\Upsilon(11020)$ peaks with little or no continuum contribution. We study the resonant substructure of the $\Upsilon(11020) \to h_b(nP)\pi^+\pi^-$ transitions and find evidence that they proceed entirely via the intermediate isovector states $Z_b(10610)$ and $Z_b(10650)$. The relative fraction of these states is loosely constrained by the current data: the hypothesis that only $Z_b(10610)$ is produced is excluded at the level of 3.3 standard deviations, while the hypothesis that only $Z_b(10650)$ is produced is not excluded at a significant level.
The cross section for e+e- to pi+ pi- psi(2S) between threshold and \sqrt{s}=5.5 GeV is measured using 673 fb^{-1} of data on and off the \Upsilon(4S) resonance collected with the Belle detector at KEKB. Two resonant structures are observed in the pi+ pi- psi(2S) invariant mass distribution, one at 4361\pm 9\pm 9 MeV/c2 with a width of 74\pm 15\pm 10 MeV/c2, and another at 4664\pm 11\pm 5 MeV/c2 with a width of 48\pm 15\pm 3 MeV/c2, if the mass spectrum is parameterized with the coherent sum of two Breit-Wigner functions. These values do not match those of any of the known charmonium states.
Measurements of neutral pion production at midrapidity in sqrt(s_NN) = 200 GeV Au+Au collisions as a function of transverse momentum, p_T, collision centrality, and angle with respect to reaction plane are presented. The data represent the final pi^0 results from the PHENIX experiment for the first RHIC Au+Au run at design center-of-mass-energy. They include additional data obtained using the PHENIX Level-2 trigger with more than a factor of three increase in statistics over previously published results for p_T > 6 GeV/c. We evaluate the suppression in the yield of high-p_T pi^0's relative to point-like scaling expectations using the nuclear modification factor R_AA. We present the p_T dependence of R_AA for nine bins in collision centrality. We separately integrate R_AA over larger p_T bins to show more precisely the centrality dependence of the high-p_T suppression. We then evaluate the dependence of the high-p_T suppression on the emission angle \Delta\phi of the pions with respect to event reaction plane for 7 bins in collision centrality. We show that the yields of high-p_T pi^0's vary strongly with \Delta\phi, consistent with prior measurements. We show that this variation persists in the most peripheral bin accessible in this analysis. For the peripheral bins we observe no suppression for neutral pions produced aligned with the reaction plane while the yield of pi^0's produced perpendicular to the reaction plane is suppressed by more than a factor of 2. We analyze the combined centrality and \Delta\phi dependence of the pi^0 suppression in different p_T bins using different possible descriptions of parton energy loss dependence on jet path-length averages to determine whether a single geometric picture can explain the observed suppression pattern.
Using 2917 $\rm{pb}^{-1}$ of data accumulated at 3.773~$\rm{GeV}$, 44.5~$\rm{pb}^{-1}$ of data accumulated at 3.65~$\rm{GeV}$ and data accumulated during a $\psi(3770)$ line-shape scan with the BESIII detector, the reaction $e^+e^-\rightarrow p\bar{p}$ is studied considering a possible interference between resonant and continuum amplitudes. The cross section of $e^+e^-\rightarrow\psi(3770)\rightarrow p\bar{p}$, $\sigma(e^+e^-\rightarrow\psi(3770)\rightarrow p\bar{p})$, is found to have two solutions, determined to be ($0.059\pm0.032\pm0.012$) pb with the phase angle $\phi = (255.8\pm37.9\pm4.8)^\circ$ ($<$0.11 pb at the 90% confidence level), or $\sigma(e^+e^-\rightarrow\psi(3770)\rightarrow p\bar{p}) = (2.57\pm0.12\pm0.12$) pb with $\phi = (266.9\pm6.1\pm0.9)^\circ$ both of which agree with a destructive interference. Using the obtained cross section of $\psi(3770)\rightarrow p\bar{p}$, the cross section of $p\bar{p}\rightarrow \psi(3770)$, which is useful information for the future PANDA experiment, is estimated to be either ($9.8\pm5.7$) nb ($<17.2$ nb at 90% C.L.) or $(425.6\pm42.9)$ nb.