A sample of 25000 Z 0 → τ + τ − events collected by the DELPHI experiment at LEP in 1991 and 1992 is used to measure the leptonic branching fractions of the τ lepton. The results are B(τ → eν ν ) = (17.51 ± 0.39) % and B(τ → μν ν ) = (17.02 ± 0.31) %. The ratio of the muon and electron couplings to the weak charged current is measured to be g μ g e = 1.000 ± 0.013 , satisfying e-μ universality. The leptonic branching fraction corrected to the value for a massless lepton, assuming e-μ universality, is found to be B(τ → lν ν ) = (17.50 ± 0.25) %.
Axis error includes +- 0.23/0.23 contribution (Data statistics).
Axis error includes +- 0.19/0.19 contribution (Data statistics).
Combined from the two branching fractions above. E-MU universality assumed.
None
No description provided.
None
C3H8 nucleus. P, DEUT and TRITIUM in the final state are considered as spectators.
P, DEUT and TRITIUM in the final state are considered as spectators.
C_3 H_8 nucleus. P in the final state are considered as spectators.
We report a new measurement of parity nonconserving (PNC) optical rotation near the 1.28 μm, 6P1/2→6P3/2 magnetic dipole transition in thallium. We find the ratio of the PNC E1 amplitude to the M1 amplitude to be R=(−14.68±0.17)×10−8, which within the present uncertainty of atomic theory yields the thallium weak charge Qw(T205l)=−114.2±3.8 and the electroweak parameter S=−2.2±3.0. Separate measurements on the F=1 and F=0 ground-state hyperfine components of the transition yield R1−R0=(0.15±0.20)×10−8, which limits the size of nuclear spin-dependent PNC in Tl.
Spin of the Tl nucleus is 1/2.
The Beijing Spectrometer (BES) experiment has observed purely leptonic decays of the Ds meson in the reaction e+e−→Ds+Ds− at a c.m. energy of 4.03 GeV. Three events are observed in which one Ds decays hadronically to φπ, K¯*0K, or K¯0K, and the other decays leptonically to μνμ or τντ. With the assumption of μ−τ universality, values of the branching fraction, B(Ds→μνμ)=(1.5−0.6−0.2+1.3+0.3)%, and the Ds pseudoscalar decay constant, fDs=(4.3−1.3−0.4+1.5+0.4)×102 MeV, are obtained.
No description provided.
In this table CONST is the pseudoscalar decay constant, f_[D/S].
No description provided.
No description provided.
An analysis of inclusive production of K0 and the meson resonances K*±(892), ρ0(770),f0(975) andf2(1270) in hadronic decays of the Z0 is presented, based on about 973,000 multihadronic events collected by the DELPHI detector at LEP during 1991 and 1992. Overall multiplicities have been determined as 1.962±0.060 K0 mesons, 0.712±0.067 K*±(892) and 1.21±0.15ρ0(770) per hadronic Z0 decay. The average multiplicities off0(975) for scaled momentum,xp, in the range 0.05≤xp≤0.6 and off2(1270) for 0.05≤xp≤1.0 are 0.098±0.016 and 0.170±0.043 respectively. Thef0(975) and ρ0(770)xp-spectra have similar shapes. Thef2(1270)/ρ0(770) ratio increases withxp. The average multiplicities and the differential cross sections are compared with the JETSET Parton Shower model. The model with default parameters fails to reproduce the experimental K0 momentum spectrum at low momentum, describes the K*±(892) and ρ0(770)xp-spectrum shapes, but significantly overestimates their production rates.
Average multiplicity per hadronic event. Extrapolation to the full X range using the X-shape predicted by JETSET 7.4 PS model.
Average multiplicity per hadronic event. Extrapolation to the full X range using the X-shape predicted by JETSET 7.4 PS model.
Average multiplicity per hadronic event. Extrapolation to the full X range using the X-shape predicted by JETSET 7.4 PS model.
None
ASYM is defined as follows: ASYM = (SIG(YRAP(P=3,RF=LAB)<1.1) - (SIG(YRAP(P=3,RF=LAB)>1.1)) / (SIG(YRAP(P=3,RF=LAB)<1.1)+ SIG(YRAP(P=3,RF=LAB)>1.1)).
ASYM is defined as follows: ASYM = (SIG(YRAP(P=3,RF=LAB)<1.1) - (SIG(YRAP( P=3,RF=LAB)>1.1)) / (SIG(YRAP(P=3,RF=LAB)<1.1)+SIG(YRAP(P=3,RF=LAB)>1.1)).
ASYM is defined as follows: ASYM = (SIG(YRAP(P=3,RF=LAB)<1.1) - (SIG(YRAP( P=3,RF=LAB)>1.1)) / (SIG(YRAP(P=3,RF=LAB)<1.1)+SIG(YRAP(P=3,RF=LAB)>1.1)).
Photon proton cross sections for elastic light vector meson production, σelνp, inelastic diffractive production, σndνp, non-diffractive production, σdνp, as well as the total cross section, σtotνp, have been measured at an average υp center of mass energy of 180 GeV with the ZEUS detector at HERA. The resulting values are σelνp = 18 ± 7 μb, σdνp = 33 ± 8 μb, σndνp = 91 ± 11 μb, and σtotνp 143 ± 17 μb, where the errors include statistical and systematic errors added in quadrature.
No description provided.
Errors contain both statistics and systematics.
Cross section for the elastic (ie. gamma p --> VM p) cross section.. Errors contain both statistics and systematics.
During the 1992 running period of the LEP e + e − collider, the DELPHI experiment accumulated approximately 24 pb − of data at the Z 0 peak. The decays into hadrons and charged leptons have been analysed to give values for the cross sections and leptonic forward-backward asymmetries which are significantly improved with respect to those previously published by the DELPHI collaboration. Incorporating these new data, more precise values for the Z 0 resonance parameters are obtained from model-independent fits. The results are interpreted within the framework of the Standard Model, yielding for the top quark mass m t = 157 −48 +36 (expt.) −20 +19 (Higgs) GeV, and for the effective mixing angle sin 2 θ eff lept = 0.2328 ± 0.0013 (expt.) −0.0003 +0.0001 (Higgs), where (Higgs) represents the variation due to Higgs boson mass in the range 60 to 1000 GeV, with central value 300 GeV.
No description provided.
First result corresponds to the total cross section (i.e. S+T channel), while second one corresponds to S-channel only. An acollinearity less that 10 deg.
Forward-backward asymmetry within the polar angular range 44 < THETA < 136 degrees and acollinearity < 10 degrees.. First result corresponds to the total cross section (i.e. S+T channel), while second one corresponds to S-channel only.