A Measurement of Sigma(tot) (e+ e- ---> Hadrons) for CM Energies Between 12.0-GeV and 36.7-GeV

The TASSO collaboration Brandelik, R. ; Braunschweig, W. ; Gather, K. ; et al.
Phys.Lett.B 113 (1982) 499-508, 1982.
Inspire Record 176887 DOI 10.17182/hepdata.6666

The ration R = σ (e + e − → hadrons) σ μμ was measured between 12.0 and 36.7 GeV c.m. energy W with a precision of typically ± 5.2%. R is found to be constant with an average R = 4.01 ± 0.03 (stat) ± (syst.) for W ⩾ 14 GeV. Quarks are found to be point-like, the mass parameter describing a possible quark form-factor being larger than 186 GeV. Fits including QCD corrections and a weak neutral-current contribution are presented.

4 data tables match query

DATA OF RUNPERIOD 1.

DATA OF RUNPERIOD 2.

R MEASURED IN SCANNING MODE.

More…

A Study of Energy-energy Correlations Between 12-{GeV} and 46.8-{GeV} {CM} Energies

The TASSO collaboration Braunschweig, W. ; Gerhards, R. ; Kirschfink, F.J. ; et al.
Z.Phys.C 36 (1987) 349-361, 1987.
Inspire Record 248660 DOI 10.17182/hepdata.1698

We present data on energy-energy correlations (EEC) and their related asymmetry (AEEC) ine+e− annihilation in the centre of mass energy range 12<W≦46.8 GeV. The energy and angular dependence of the EEC in the central region is well described byOαs2 QCD plus a fragmentation term proportional to\({1 \mathord{\left/ {\vphantom {1 {\sqrt s }}} \right. \kern-\nulldelimiterspace} {\sqrt s }}\). BareO(α)s2 QCD reproduces our data for the large angle region of the AEEC. Nonperturbative effects for the latter are estimated with the help of fragmentation models. From various analyses using different approximations, we find that values for\(\Lambda _{\overline {MS} } \) in the range 0.1–0.3 GeV give a good description of the data. We also compare analytical calculations in QCD for the EEC in the back-to-back region to our data. The theoretical predictions describe well both the angular and energy dependence of the data in the back-to-back region.

10 data tables match query

Correlation function binned in cos(chi).

Correlation function binned in cos(chi).

Correlation function binned in cos(chi).

More…

Comparison of e+ e- Annihilation with QCD and Determination of the Strong Coupling Constant

The TASSO collaboration Brandelik, R. ; Braunschweig, W. ; Gather, K. ; et al.
Phys.Lett.B 94 (1980) 437-443, 1980.
Inspire Record 153511 DOI 10.17182/hepdata.5489

We have analyzed 1113 events of the reaction e + e − → hadrons at CM energies of 12 and 30 GeV in order to make a detailed comparison with QCD. Perturbative effects can be well separated from effects depending on the quark and gluon fragmentation parameters to yield a reliable measurement of the coupling constant α S . At 30 GeV, the result is α S = 0.17 ± 0.02 (statistical) ± 0.03 (systematic). QCD model predictions, using the fragmentation parameters determined along with α S , agree with both gross properties of the final states and with detailed features of the three-jet states.

7 data tables match query

No description provided.

No description provided.

No description provided.

More…

Experimental Test of the Flavor Independence of the Quark - Gluon Coupling Constant

The TASSO collaboration Althoff, M. ; Braunschweig, W. ; Kirschfink, F.J. ; et al.
Phys.Lett.B 138 (1984) 317-324, 1984.
Inspire Record 199470 DOI 10.17182/hepdata.6609

Reconstruction of charged D ∗ 's produced inclusively in e + e −. annihilation at CM energies near 34.4 GeV is accomplished in the decay modes D ∗ + → D 0 π + → K − gp + π 0 π + and D ∗ + → D 0 π + → K − gp + π − π + π + and their charge conjugates. Using these and previously reported D ∗ + → D 0 π + → K − gp + π + and D ∗ + → D 0 π + → K − gp + π + + missing π 0 channels we present evidence for hard gluon bremsstrahlung from charm quarks and show that the ratio of the quark-gluon coupling constant of charm quarks to the coupling constant obtained in the average hadronic event, α s c α rms = 100 ± 0.20 ± 1.20 . Our result provides evidence that the quark-gluon coupling constant is independent of flavor.

2 data tables match query

No description provided.

No description provided.


Precise Measurement of Total Cross-Sections for the Process e+ e- ---> Multi-Hadrons in the Center-Of-Mass Energy Range Between 12.0-GeV and 36.4-GeV

The JADE collaboration Bartel, W. ; Becker, L. ; Bowdery, C. ; et al.
Phys.Lett.B 129 (1983) 145-152, 1983.
Inspire Record 191159 DOI 10.17182/hepdata.6639

The total cross section for the process e + e − → hadrons has been measured in the CM energy range between 12.0 and 36.4 GeV using the JADE detector with a typical systematic error of ±3%. The ratio R( σ( ee → hadrons ) σ pt ) is found to be constant over this range with an average value of 3.97 ± 0.05 (statistical and point-to-point systematic error) ± 0.10 (normalization error). The data were compared with the standard electro-weak interaction model including QCD corrections.

2 data tables match query

ERRORS ARE STATISTICAL PLUS POINT TO POINT SYSTEMATICS. THERE IS AN ADDITIONAL 2.4 PCT OVERALL NORMALIZATION ERROR.

No description provided.


Differential Three Jet Cross-section in $e^+ e^-$ Annihilation and Comparison With Second Order Predictions of {QCD} and Abelian Vector Theory

The JADE collaboration Bartel, W. ; Cords, D. ; Dietrich, G. ; et al.
Phys.Lett.B 119 (1982) 239-244, 1982.
Inspire Record 180033 DOI 10.17182/hepdata.30830

Differential three-jet cross sections have been measured in e + e − -annihilation at an average CM energy of 33.8 GeV and were compared to first- and second-order predictions of QCD and of a QED-like abelian vector theory. QCD provides a good description of the observed distributions. The inclusion of second-order effects reduced the observed quark-gluon coupling strength by about 20% to α S = 0.16 ± 0.015 (stat.) ± 0.03 (syst.). The abelian vector theory is found to be incompatible with the data.

2 data tables match query

FIRST ORDER QCD.

SECOND ORDER QCD.


Observation of Planar Three Jet Events in e+ e- Annihilation and Evidence for Gluon Bremsstrahlung

The JADE collaboration Bartel, W. ; Canzler, T. ; Cords, D. ; et al.
Phys.Lett.B 91 (1980) 142-147, 1980.
Inspire Record 143985 DOI 10.17182/hepdata.6339

Topological distributions of charged and neutral hadrons from the reaction e + e − → multihadrons are studied at √ s of about 30 GeV. An excess of planar events is observed at a rate which cannot be explained by statistical fluctuations in the standard two-jet process. The planar events, mostly consisting of a slim jet on one side and a broader jet on the other, are shown actually to possess three-jet structure by demonstrating that the broader jet itself consists of two collinear jets in its own rest system. Detailed agreement between data and predictions is obtained if the process e + e − →q q ̄ g is taken into account. This strongly suggests gluon bremsstrahlung as the origin of the planar three-jet events. By comparison of the data with the qq̄g-model we obtain a value for the strong coupling constant of α S ( q 2 = 0.17 ± 0.04.

1 data table match query

No description provided.


Measurements of Energy Correlations in $e^+ e^- \to$ Hadrons

The JADE collaboration Bartel, W. ; Becker, L. ; Bowdery, C. ; et al.
Z.Phys.C 25 (1984) 231, 1984.
Inspire Record 202784 DOI 10.17182/hepdata.1998

Energy-energy-correlations (EEC) have been measured with the JADE detector at c.m. energies of 14 GeV, 22 GeV and in the region 29 GeV<Ecm<36 GeV. Corrected results are presented of EEC and their asymmetry, which can be directly compared to theoretical predictions. At 〈Ecm〉=34 GeV a comparison with second order QCD predictions yields good agreement for the string model fragmentation resulting in a value of the strong coupling constant αs=0.165±0.01 (stat.). The independent fragmentation models, which yield values of αs between 0.10 and 0.15 depending on the treatment of energy and momentum conservation and of the gluon splitting, do not provide a satisfactory description of the data over the full angular range.

3 data tables match query

TABLES GIVEN HERE CONTAIN SELF CORRELATION. THIS IS SUBTRACTED IN THE FIGURE.

VALUE OF ASSYMETRY IN CORRELATIONS.

No description provided.


A measurement of the b-quark mass from hadronic Z decays.

The ALEPH collaboration Barate, R. ; Decamp, D. ; Ghez, Philippe ; et al.
Eur.Phys.J.C 18 (2000) 1-13, 2000.
Inspire Record 531468 DOI 10.17182/hepdata.49909

Hadronic Z decay data taken with the ALEPH detector at LEP1 are used to measure the three-jet rate as well as moments of various event-shape variables. The ratios of the observables obtained from b-tagged events and from an inclusive sample are determined. The mass of the b quark is extracted from a fit to the measured ratios using a next-to-leading order prediction including mass effects. Taking the first moment of the y3 distribution, which is the observable with the smallest hadronization corrections and systematic uncertainties, the result is: mb(MZ) = [3.27+-0.22(stat) +-0.22(exp)+-0.38(had)+-0.16(theo)] GeV/c2. The measured ratio is alternatively employed to test the flavour independence of the strong coupling constant for b and light quarks.

1 data table match query

No description provided.


Test of the flavor independence of alpha-s

The ALEPH collaboration Buskulic, D. ; Casper, D. ; De Bonis, I. ; et al.
Phys.Lett.B 355 (1995) 381-393, 1995.
Inspire Record 393416 DOI 10.17182/hepdata.48177

Using about 950000 hadronic events collected during 1991 and 1992 with the ALEPH detector, the ratios r b = α s b α s udsc and r uds = α s uds α s cb have been measured in order to test the flavour independence of the strong coupling constant α s . The analysis is based on event-shape variables using the full hadronic sample, two b -quark samples enriched by lepton tagging and lifetime tagging, and a light-quark sample enriched by lifetime antitagging. The combined results are r b = 1.002±0.023 and r uds = 0.971 ± 0.023.

1 data table match query

No description provided.