A measurement of the proton structure function F_2(x,Q^2) is presented in the kinematic range 0.045 GeV^2 < Q^2 < 0.65 GeV^2 and 6*10^{-7} < x < 1*10^{-3}. The results were obtained using a data sample corresponding to an integrated luminosity of 3.9pb^-1 in e^+p reactions recorded with the ZEUS detector at HERA. Information from a silicon-strip tracking detector, installed in front of the small electromagnetic calorimeter used to measure the energy of the final-state positron at small scattering angles, together with an enhanced simulation of the hadronic final state, has permitted the extension of the kinematic range beyond that of previous measurements. The uncertainties in F_2 are typically less than 4%. At the low Q^2 values of the present measurement, the rise of F_2 at low x is slower than observed in HERA data at higher Q^2 and can be described by Regge theory with a constant logarithmic slope. The dependence of F_2 on Q^2 is stronger than at higher Q^2 values, approaching, at the lowest Q^2 values of this measurement, a region where F_2 becomes nearly proportional to Q^2.
Measured values of F2 at Q**2 = 0.045 GeV**2 as a function of X.
Measured values of F2 at Q**2 = 0.065 GeV**2 as a function of X.
Measured values of F2 at Q**2 = 0.085 GeV**2 as a function of X.
The distribution of the azimuthal angle for the charged hadrons has been studied in the hadronic centre-of-mass system for neutral current deep inelastic positron-proton scattering with the ZEUS detector at HERA. Measurements of the dependence of the moments of this distribution on the transverse momenta of the charged hadrons are presented. Asymmetries that can be unambiguously attributed to perturbative QCD processes have been observed for the first time.
Differential azimuthal angular distributions for different PT cuts.
Mean values of cos(phi) and cos(2pi) as a function of the PT cut.
The forward-jet cross section in deep inelastic ep scattering has been measured using the ZEUS detector at HERA with an integrated luminosity of 6.36 pb^-1. The jet cross section is presented as a function of jet transverse energy squared, E(T,jet)^2, and Q^2 in the kinematic ranges 10^-2<E(T,jet)^2/Q^2<10^2 and 2.5 10^-4<x<8.0 10^-2. Since the perturbative QCD predictions for this cross section are sensitive to the treatment of the log(E_T/Q)^2 terms, this measurement provides an important test. The measured cross section is compared to the predictions of a next-to-leading order pQCD calculation as well as to various leading-order Monte Carlo models. Whereas the predictions of all models agree with the measured cross section in the region of small E(T,Jet)^2/Q^2, only one model, which includes a resolved photon component, describes the data over the whole kinematic range.
Forward jet cross section as a function of ET**2/Q**2. The second DSYS error is the uncertainty in the energy scale of the calorimeter.
Measured forward-jet x distribution.
The production of D*+-(2010) mesons in deep inelastic scattering has been measured in the ZEUS detector at HERA using an integrated luminosity of 37 pb^-1. The decay channels D*+ -> D0 pi+(+c.c.), with D0 -> K- pi+ or D0 ->K- pi- pi+ pi+, have been used to identify the D mesons. The e+p cross section for inclusive D*+- production with 1<Q^2<600 GeV^2 and 0.02<y<0.7 is 8.31 +- 0.31(stat.) +0.30-0.50(syst.) nb in the kinematic region 1.5< pT(D*+-)<15 GeV and |eta(D*+-)|<1.5. Differential cross sections are consistent with a next-to-leading-order perturbative-QCD calculation when using charm-fragmentation models which take into account the interaction of the charm quark with the proton remnant. The observed cross section is extrapolated to the full kinematic region in pT(D*+-) and eta(D*+-) in order to determine the charm contribution, F^ccbar_2(x,Q^2), to the proton structure function. The ratio F^ccbar_2/F_2 rises from ~10% at Q^2 ~1.8 GeV^2 to ~30% at Q^2 ~130 GeV^2 for x values in the range 10^-4 to 10-3.
The measured cross section for D* production. The first is derived from theK2PI final state and the second from the K4PI final state.
The differential cross section w.r.t. Q**2 from the K2PI final state. The asymmetric errors are the quadratic sum of the statistical and systematic errors. The statistical errors are also shown separately.
The differential cross section w.r.t. X from the K2PI final state. The asymmetric errors are the quadratic sum of the statistical and systematic errors. The statistical errors are also shown separately.
We present a measurement of the longitudinal spin asymmetry A_|| in photoproduction of pairs of hadrons with high transverse momentum p_T. Data were accumulated by the HERMES experiment using a 27.5 GeV polarized positron beam and a polarized hydrogen target internal to the HERA storage ring. For h+h- pairs with p_T^h_1 > 1.5 GeV/c and p_T^h_2 > 1.0 GeV/c, the measured asymmetry is A_|| = -0.28 +/- 0.12 (stat.) +/- 0.02 (syst.). This negative value is in contrast to the positive asymmetries typically measured in deep inelastic scattering from protons, and is interpreted to arise from a positive gluon polarization.
Asymmetry measurement with a PT cut of 1.5 GeV on the hadron with the higher PT, and 1.0 GeV on the hadron with the lower PT.
A search for the leptonic decays of W bosons produced in the reaction e^+ p\to e^+ W^\pm X at a centre-of-mass energy of 300 GeV has been performed with the ZEUS detector at HERA using an integrated luminosity of 47.7 pb^-1 . Three events consistent with W\to e\nu decay are found, giving a cross section of 0.9 +1.0 -0.7 \pm 0.2 pb, in good agreement with the Standard Model prediction. The corresponding 95% C.L. upper limit on the cross section is 3.3 pb. A search for the decay W\to \mu\nu has a smaller selection efficiency and yields no candidate events. Limits on the cross section for W production with large hadronic transverse momentum have been obtained. A search for high-transverse-momentum isolated tracks in events with large missing transverse momentum yields results in good agreement with Standard Model expectations, in contrast to a recent report by the H1 collaboration of the observation of an excess of such events.
Measured cross section from three events.
95 PCT CONFIDENCE UPPER LIMIT TO THE PROCESS.
The e^+p neutral-current deep inelastic scattering differential cross-sections $d\sigma/dQ^2$, for Q^2 > 400 GeV^2, $d\sigma/dx$ and $d\sigma/dy$, for Q^2 > 400, 2500 and 10000 GeV^2, have been measured with the ZEUS detector at HERA. The data sample of 47.7 pb^-1 was collected at a center-of-mass energy of 300 GeV. The cross-section, $d\sigma/dQ^2$, falls by six orders of magnitude between Q^2 = 400 and 40000 GeV^2. The predictions of the Standard Model are in very good agreement with the data. Complementing the observations of time-like Z^0 contributions to fermion-antifermion annihilation, the data provide direct evidence for the presence of Z^0 exchange in the space-like region explored by deep inelastic scattering.
The differential cross section as a function of Q**2.
The differential cross section as a function of x, the Bjorken x variable.
The differential cross section as a function of x, the Bjorken x variable.
The virtual photon absorption cross section differences [sigma_1/2-sigma_3/2] for the proton and neutron have been determined from measurements of polarised cross section asymmetries in deep inelastic scattering of 27.5 GeV longitudinally polarised positrons from polarised 1H and 3He internal gas targets. The data were collected in the region above the nucleon resonances in the kinematic range nu < 23.5 GeV and 0.8 GeV**2 < Q**2 < 12 GeV**2. For the proton the contribution to the generalised Gerasimov-Drell-Hearn integral was found to be substantial and must be included for an accurate determination of the full integral. Furthermore the data are consistent with a QCD next-to-leading order fit based on previous deep inelastic scattering data. Therefore higher twist effects do not appear significant.
Gerasimov-Drell-Hearn sum rule for proton as a function of Q2.
Gerasimov-Drell-Hearn sum rule for neutron as a function of Q2 (integral spans from Q2/2M to infinity instead of zero to infinity, see paper).
Cross section difference for the proton data. Statistical errors only.
A measurement of the proton spin structure function g1p(x,Q^2) in deep-inelastic scattering is presented. The data were taken with the 27.6 GeV longitudinally polarised positron beam at HERA incident on a longitudinally polarised pure hydrogen gas target internal to the storage ring. The kinematic range is 0.021<x<0.85 and 0.8 GeV^2<Q^2<20 GeV^2. The integral Int_{0.021}^{0.85} g1p(x)dx evaluated at Q0^2 of 2.5 GeV^2 is 0.122+/-0.003(stat.)+/-0.010(syst.).
The second systematic errors listed for G1/F1 (G1) are the uncertainties concerning R (R and F2).
G1 evolved at Q2 = 2.5 GeV**2, assuming G1/F1 to be independent of Q2. The second systematic errors listed for are the uncertainties concerning R and F2.