The polarization parameter P for the reactions p p → π − π + and p p → K − K + has been measured over essentially the full angular range at ll laboratory momenta between 1.0 and 2.2. GeV/ c , using a proton target polarized perpendicular to the scattering plane. The angles and momenta of both final state particles were determined from wire spark chambers, using the deflection caused by the polarized target magnet. Between 1000 and 5300 π − π + events, and 140 and 1300 K − K + events, were measured at each momentum. Differential cross sections for p p → π − π + were obtained. These are in excellent agreement with previous results. The polarization parameter for both channels is very close to +1 over much of the angular range. Legendre polynomial fits to the data are presented.
THE DIFFERENTIAL CROSS SECTIONS IN THIS EXPERIMENT AGREE WITH THE ONES FROM THE AUTHORS' EARLIER EXPERIMENT (E. EISENHANDLER ET AL., NP B96, 109(1975)) USING A LIQUID HYDROGEN TARGET, THOUGH THEY DO NOT CONSIDER THE PRESENT ONES QUITE AS RELIABLE.
No description provided.
No description provided.
Measurements have been made of the differential cross section for p p elastic scattering over a c.m. angular range −0.95 ⩽ cos θ ∗ ⩽ 0.93 at 21 incident antiproton momenta between 0.69 GeV/ c and 2.43 GeV/ c (c.m. energy 1.96–2.58 GeV). About 10 5 events were obtained at each momentum. The results are discussed primarily in terms of the formation of s -channel resonances in the T and U mass regions, and within the context of the optical model of Frahn and Venter.
No description provided.
No description provided.
No description provided.
Differential cross sections have been measured for the interactions p p → π − π + and p p → K − K + over a centre of mass angular range −0.95 ⩽ cos θ ∗ ⩽ 0.95 at 20 incident momenta between 0.79 and 2.43 GeV/ c . A magnetic spectrometer with wire spark chambers was used. Typically 2000 π − π + and 300 K − K + events were obtained at each momentum. Results are compared with those from related experiments.
No description provided.
No description provided.
No description provided.
We present measurements from a spark chamber experiment of the differential cross-sections for p p → π − π + , K − K + at 20 momenta in the range 0.8–2.4 GeV/ c (c.m. energy 2.02 to 2.57 GeV). The c.m. angular range was −0.95 < cos θ ∗ < 0.95 . There are about 2000π − π + events and about 300 K − K + events at each momentum.
ALL ANGLES.
Differential cross-sections for proton-proton elastic scattering have been measured covering the angular range from 50° to 90° c.m. at twelve incident momenta from 1.3 to 3.0 GeV/c. The angular distributions are quite smooth, but there is evidence of structure in the energy dependence of fixed-angle cross-sections at |t| ∼ 1 (GeV)2.
No description provided.
No description provided.
No description provided.
Electron-proton elastic scattering cross sections have been measured at four-momentum transfers between 1.0 and 3.0 (GeV/ c ) 2 and at electron scattering angles between 10° and 20° and at about 86° in the laboratory. The proton electromagnetic form factors G E and G M were determined. The results indicate that G E ( q 2 ) decreases faster with increasing q 2 than G M ( q 2 ).
Axis error includes +- 2.5/2.5 contribution (Due to counting statisticss, separation of elastic events, beam monitoring, incident energy, scattering angle, proton absorption, solid angle, target length and density).
CONST(NAME=MU) is the magnetic moment.
Differential cross sections for elastic π±−p scattering have been measured at lab momenta of 8 and 12 GeV/c in a momentum-transfer region corresponding to 1.2≤−t≤6 (GeV/c)2. Also, differential cross sections near 180° were measured for 4 and 8 GeV/c pions. At momentum transfers greater than −t=2 (GeV/c)2, the π−p cross sections drop much faster with increasing angle than the corresponding p−p cross sections. Also, in the region −t≃1.3 (GeV/c)2, there is structure in the π−p angular distribution but not in the p−p angular distribution. At −t≃3 (GeV/c)2, the drop in cross section appears to stop and from then on the angular distribution is consistent with isotropy. But in the angular region 170° to 180°, the cross sections have become much larger, and sharp backward peaks are observed. Information is given on the energy and charge dependences and widths of these backward peaks.
'1'. '2'.
'1'. '2'.
No description provided.
The variation of the differential cross section for π+ photoproduction from hydrogen, with γ-ray energy, has been examined at a laboratory angle of 58° to the γ-ray beam. A thin hydrogen target, and a counter system designed to eliminate random events, have been employed. Mean values for the differential cross section dσdΩ at γ-ray energies of 162, 168, 175, and 192 Mev are 5.42±0.38, 5.77±0.41, 6.74±0.47, and 8.22±0.58 μb/sr, respectively, where the error limits refer to relative values. The results substantiate the rising trend of the interaction quantity {(dσdΩ)(μ2pε)(1+ωM)2} near threshold, in accord with dispersion theory; and the absolute cross sections are compatible with a threshold value for a0+ near 20 μb/ steradian, consistent with findings in related pion work.
No description provided.